18 research outputs found

    Close relation of arterial ICC-like cells to the contractile phenotype of vascular smooth muscle cell

    Get PDF
    This work aimed to establish the lineage of cells similar to the interstitial cells of Cajal (ICC), the arterial ICC-like (AIL) cells, which have recently been described in resistance arteries, and to study their location in the artery wall. Segments of guinea-pig mesenteric arteries and single AIL cells freshly isolated from them were used. Confocal imaging of immunostained cells or segments and electron microscopy of artery segments were used to test for the presence and cellular localization of selected markers, and to localize AIL cells in intact artery segments. AIL cells were negative for PGP9.5, a neural marker, and for von Willebrand factor (vWF), an endothelial cell marker. They were positive for smooth muscle α-actin and smooth muscle myosin heavy chain (SM-MHC), but expressed only a small amount of smoothelin, a marker of contractile smooth muscle cells (SMC), and of myosin light chain kinase (MLCK), a critical enzyme in the regulation of smooth muscle contraction. Cell isolation in the presence of latrunculin B, an actin polymerization inhibitor, did not cause the disappearance of AIL cells from cell suspension. The fluorescence of basal lamina protein collagen IV was comparable between the AIL cells and the vascular SMCs and the fluorescence of laminin was higher in AIL cells compared to vascular SMCs. Moreover, cells with thin processes were found in the tunica media of small resistance arteries using transmis-sion electron microscopy. The results suggest that AIL cells are immature or phenotypically modulated vascular SMCs constitutively present in resistance arteries

    Resident phenotypically modulated vascular smooth muscle cells in healthy human arteries.

    Get PDF
    Vascular interstitial cells (VICs) are non-contractile cells with filopodia previously described in healthy blood vessels of rodents and their function remains unknown. The objective of this study was to identify VICs in human arteries and to ascertain their role. VICs were identified in the wall of human gastro-omental arteries using transmission electron microscopy. Isolated VICs showed ability to form new and elongate existing filopodia and actively change body shape. Most importantly sprouting VICs were also observed in cell dispersal. RT-PCR performed on separately collected contractile vascular smooth muscle cells (VSMCs) and VICs showed that both cell types expressed the gene for smooth muscle myosin heavy chain (SM-MHC). Immunofluorescent labelling showed that both VSMCs and VICs had similar fluorescence for SM-MHC and αSM-actin, VICs, however, had significantly lower fluorescence for smoothelin, myosin light chain kinase, h-calponin and SM22α. It was also found that VICs do not have cytoskeleton as rigid as in contractile VSMCs. VICs express number of VSMC-specific proteins and display features of phenotypically modulated VSMCs with increased migratory abilities. VICs, therefore represent resident phenotypically modulated VSMCs that are present in human arteries under normal physiological conditions

    Downregulation of L‐Type Voltage‐Gated Ca 2+

    No full text
    corecore