149 research outputs found
Re-appearance of antiferromagnetic ordering with Zn and Ni substitution in La_{2-x}Sr_xCuO_4
The effects of nonmagnetic Zn and magnetic Ni substitution for Cu site on
magnetism are studied by measurements of uniform magnetic susceptibility for
lightly doped La_{2-x}Sr_xCu_{1-z}M_zO_4 (M=Zn or Ni) polycrystalline samples.
For the parent x=0, Zn doping suppresses the N\'{e}el temperature T_N whereas
Ni doping hardly changes T_N up to z=0.3. For the lightly doped samples with
T_N~0, the Ni doping recovers T_N. For the superconducting samples, the Ni
doping induces the superconductivity-to-antiferromagnetic transition (or
crossover). All the heavily Ni doped samples indicate a spin glass behavior at
\~15 K.Comment: 2 pages including 3 figures, to be published in Physica C (LT23,
Hiroshima 2002
Approaching the knee -- balloon-borne observations of cosmic ray composition
Below the knee in the cosmic ray spectrum, balloon and spacecraft experiments
offer the capability of direct composition and energy measurements on the
primary particles. A major difficulty is obtaining enough exposure to extend
the range of direct measurements sufficiently high in energy to permit overlap
with ground-based observations. Presently, balloon and space measurements
extend only up to ~100 TeV, well below the range of ground-based experiments.
The prospect of Ultra-Long Duration Balloon missions offers the promise of
multiple long flights that can build up exposure. The status of balloon
measurements to measure the high energy proton and nuclear composition and
spectrum is reviewed, and the statistical considerations involved in searching
for a steepening in the spectrum are discussed. Given the very steeply falling
spectrum, it appears unlikely that balloon experiments will be able to extend
the range of direct measurements beyond 1000 TeV any time in the near future.
Especially given the recent suggestions from KASCADE that the proton spectrum
steepens only at 4000-5000 TeV, the chance of detecting the knee with direct
measurements of protons to iron on balloons is not likely to occur without
significant increases in the payload and flight duration capabilities of high
altitude balloons.Comment: 10 pages, to be published, J. Phys. Conf. Ser. (Proc. Workshop on
Physics at the End of the Galactic Cosmic Ray Spectrum, Aspen, April 2005
On-orbit Operations and Offline Data Processing of CALET onboard the ISS
The CALorimetric Electron Telescope (CALET), launched for installation on the
International Space Station (ISS) in August, 2015, has been accumulating
scientific data since October, 2015. CALET is intended to perform long-duration
observations of high-energy cosmic rays onboard the ISS. CALET directly
measures the cosmic-ray electron spectrum in the energy range of 1 GeV to 20
TeV with a 2% energy resolution above 30 GeV. In addition, the instrument can
measure the spectrum of gamma rays well into the TeV range, and the spectra of
protons and nuclei up to a PeV.
In order to operate the CALET onboard ISS, JAXA Ground Support Equipment
(JAXA-GSE) and the Waseda CALET Operations Center (WCOC) have been established.
Scientific operations using CALET are planned at WCOC, taking into account
orbital variations of geomagnetic rigidity cutoff. Scheduled command sequences
are used to control the CALET observation modes on orbit. Calibration data
acquisition by, for example, recording pedestal and penetrating particle
events, a low-energy electron trigger mode operating at high geomagnetic
latitude, a low-energy gamma-ray trigger mode operating at low geomagnetic
latitude, and an ultra heavy trigger mode, are scheduled around the ISS orbit
while maintaining maximum exposure to high-energy electrons and other
high-energy shower events by always having the high-energy trigger mode active.
The WCOC also prepares and distributes CALET flight data to collaborators in
Italy and the United States.
As of August 31, 2017, the total observation time is 689 days with a live
time fraction of the total time of approximately 84%. Nearly 450 million events
are collected with a high-energy (E>10 GeV) trigger. By combining all operation
modes with the excellent-quality on-orbit data collected thus far, it is
expected that a five-year observation period will provide a wealth of new and
interesting results.Comment: 11 pages, 7 figures, published online 27 February 201
Search for GeV Gamma-ray Counterparts of Gravitational Wave Events by CALET
We present results on searches for gamma-ray counterparts of the LIGO/Virgo
gravitational-wave events using CALorimetric Electron Telescope ({\sl CALET})
observations. The main instrument of {\sl CALET}, CALorimeter (CAL), observes
gamma-rays from GeV up to 10 TeV with a field of view of nearly 2 sr.
In addition, the {\sl CALET} gamma-ray burst monitor (CGBM) views 3 sr
and sr of the sky in the 7 keV -- 1 MeV and the 40 keV -- 20 MeV
bands, respectively, by using two different crystal scintillators. The {\sl
CALET} observations on the International Space Station started in October 2015,
and here we report analyses of events associated with the following
gravitational wave events: GW151226, GW170104, GW170608, GW170814 and GW170817.
Although only upper limits on gamma-ray emission are obtained, they correspond
to a luminosity of erg s in the GeV energy band
depending on the distance and the assumed time duration of each event, which is
approximately the order of luminosity of typical short gamma-ray bursts. This
implies there will be a favorable opportunity to detect high-energy gamma-ray
emission in further observations if additional gravitational wave events with
favorable geometry will occur within our field-of-view. We also show the
sensitivity of {\sl CALET} for gamma-ray transient events which is the order of
~erg\,cm\,s for an observation of 100~s duration.Comment: 12 pages, 8 figures, 1 table. Accepted for publication in
Astrophysical Journa
Characteristics and Performance of the CALorimetric Electron Telescope (CALET) Calorimeter for Gamma-Ray Observations
The CALorimetric Electron Telescope primary detector (CALET-CAL) is a 30 radiation-length-deep hybrid calorimeter designed for the accurate measurement of high-energy cosmic rays. It is capable of triggering on and giving near complete containment of electromagnetic showers from primary electrons and gamma rays from 1 GeV to over 10 TeV. The first 24 months of on-orbit scientific data (2015 November 01-2017 October 31) provide valuable characterization of the performance of the calorimeter based on analyses of the gamma-ray data set in general and bright point sources in particular. We describe the gamma-ray analysis, the expected performance of the calorimeter based on Monte Carlo simulations, the agreement of the flight data with the simulated results, and the outlook for long-term gamma-ray observations with the CAL
The CALorimetric Electron Telescope (CALET) for high-energy astroparticle physics on the International Space Station
The CALorimetric Electron Telescope (CALET) is a space experiment, currently under development by Japan in collaboration with Italy and the United States, which will measure the flux of cosmic-ray electrons (and positrons) up to 20 TeV energy, of gamma rays up to 10 TeV, of nuclei with Z from 1 to 40 up to 1 PeV energy, and will detect gamma-ray bursts in the 7 keV to 20 MeV energy range during a 5 year mission. These measurements are essential to investigate possible nearby astrophysical sources of high energy electrons, study the details of galactic particle propagation and search for dark matter signatures. The main detector of CALET, the Calorimeter, consists of a module to identify the particle charge, followed by a thin imaging calorimeter (3 radiation lengths) with tungsten plates interleaving scintillating fibre planes, and a thick energy measuring calorimeter (27 radiation lengths) composed of lead tungstate logs. The Calorimeter has the depth, imaging capabilities and energy resolution necessary for excellent separation between hadrons, electrons and gamma rays. The instrument is currently being prepared for launch (expected in 2015) to the International Space Station ISS, for installation on the Japanese Experiment Module - Exposure Facility (JEM-EF)
- …