3,847 research outputs found
Non-Holonomic Control IV : Coherence Protection in a Rubidium isotope
In this paper, we present a realistic application of the coherence protection
method proposed in the previous article. A qubit of information encoded on the
two spin states of a Rubidium isotope is protected from the action of electric
and magnetic fields
Non-Holonomic Control I
In this paper, we present a universal control technique, the non-holonomic
control, which allows us to impose any arbitrarily prescribed unitary evolution
to any quantum system through the alternate application of two well-chosen
perturbations
Holding a Stick at Both Ends: On Faces and Expertise
Ever since Diamond and Carey\u27s (1986) seminal work, object expertise has often been viewed through the prism of face perception (for a thorough discussion, see Tanaka and Gauthier, 1997; Sheinberg and Tarr, 2010). According to Wong and Wong (2014, W&W), however, this emphasis has simply been a response to the question of modularity of face perception, and has not been about expertise in and of itself. It is precisely this conflation of questions of expertise and modularity, the consequent focus on FFA, and the detrimental effect this had on the field of object expertise research that we discussed as part of our original review (Harel et al., 2013)
Goal-conflict detection based on temporal satisfiability checking
Goal-oriented requirements engineering approaches propose capturing how a system should behave through the speci ca- tion of high-level goals, from which requirements can then be systematically derived. Goals may however admit subtle situations that make them diverge, i.e., not be satis able as a whole under speci c circumstances feasible within the domain, called boundary conditions . While previous work al- lows one to identify boundary conditions for con icting goals written in LTL, it does so through a pattern-based approach, that supports a limited set of patterns, and only produces pre-determined formulations of boundary conditions. We present a novel automated approach to compute bound- ary conditions for general classes of con icting goals expressed in LTL, using a tableaux-based LTL satis ability procedure. A tableau for an LTL formula is a nite representation of all its satisfying models, which we process to produce boundary conditions that violate the formula, indicating divergence situations. We show that our technique can automatically produce boundary conditions that are more general than those obtainable through existing previous pattern-based approaches, and can also generate boundary conditions for goals that are not captured by these patterns
Recommended from our members
The occipital lateral plate mesoderm is a novel source for vertebrate neck musculature
In vertebrates, body musculature originates from somites, whereas head muscles originate from the cranial mesoderm. Neck muscles are located in the transition between these regions. We show that the chick occipital lateral plate mesoderm has myogenic capacity and gives rise to large muscles located in the neck and thorax. We present molecular and genetic evidence to show that these muscles not only have a unique origin, but additionally display a distinct temporal development, forming later than any other muscle group described to date. We further report that these muscles, found in the body of the animal, develop
like head musculature rather than deploying the programme used by the trunk muscles. Using mouse genetics we reveal that these muscles are formed in trunk muscle mutants but are absent in head muscle mutants. In concordance with this conclusion, their connective tissue is neural crest in origin. Finally, we provide evidence that the mechanism by which these neck muscles develop is conserved in vertebrates
Fast Arc-Annotated Subsequence Matching in Linear Space
An arc-annotated string is a string of characters, called bases, augmented
with a set of pairs, called arcs, each connecting two bases. Given
arc-annotated strings and the arc-preserving subsequence problem is to
determine if can be obtained from by deleting bases from . Whenever
a base is deleted any arc with an endpoint in that base is also deleted.
Arc-annotated strings where the arcs are ``nested'' are a natural model of RNA
molecules that captures both the primary and secondary structure of these. The
arc-preserving subsequence problem for nested arc-annotated strings is basic
primitive for investigating the function of RNA molecules. Gramm et al. [ACM
Trans. Algorithms 2006] gave an algorithm for this problem using time
and space, where and are the lengths of and , respectively. In
this paper we present a new algorithm using time and space,
thereby matching the previous time bound while significantly reducing the space
from a quadratic term to linear. This is essential to process large RNA
molecules where the space is likely to be a bottleneck. To obtain our result we
introduce several novel ideas which may be of independent interest for related
problems on arc-annotated strings.Comment: To appear in Algoritmic
- …