8,160 research outputs found

    Rotating Leaks in the Stadium Billiard

    Full text link
    The open stadium billiard has a survival probability, P(t)P(t), that depends on the rate of escape of particles through the leak. It is known that the decay of P(t)P(t) is exponential early in time while for long times the decay follows a power law. In this work we investigate an open stadium billiard in which the leak is free to rotate around the boundary of the stadium at a constant velocity, ω\omega. It is found that P(t)P(t) is very sensitive to ω\omega. For certain ω\omega values P(t)P(t) is purely exponential while for other values the power law behaviour at long times persists. We identify three ranges of ω\omega values corresponding to three different responses of P(t)P(t). It is shown that these variations in P(t)P(t) are due to the interaction of the moving leak with Marginally Unstable Periodic Orbits (MUPOs)

    Langmuir Wave Generation Through A Neutrino Beam Instability

    Get PDF
    A standard version of a kinetic instability for the generation of Langmuir waves by a beam of electrons is adapted to describe the analogous instability due to a beam of neutrinos. The interaction between a Langmuir wave and a neutrino is treated in the one-loop approximation to lowest order in an expansion in 1/MW21/M_W^2 in the standard electroweak model. It is shown that this kinetic instability is far too weak to occur in a suggested application to the reheating of the plasma behind a stalled shock in a type II supernova (SN). This theory is also used to test the validity of a previous analysis of a reactive neutrino beam instability and various shortcomings of this theory are noted. In particular, it is noted that relativistic plasma effects have a significant effect on the calculated growth rates, and that any theoretical description of neutrino-plasma interactions must be based directly on the electroweak theory. The basic scalings discussed in this paper suggest that a more complete investigation of neutrino-plasma processes should be undertaken to look for an efficient process capable of driving the stalled shock of a type II SN.Comment: 23 pages, incl. 5 postscript figure

    Calculation of the effect of random superfluid density on the temperature dependence of the penetration depth

    Full text link
    Microscopic variations in composition or structure can lead to nanoscale inhomogeneity in superconducting properties such as the magnetic penetration depth, but measurements of these properties are usually made on longer length scales. We solve a generalized London equation with a non-uniform penetration depth, lambda(r), obtaining an approximate solution for the disorder-averaged Meissner effect. We find that the effective penetration depth is different from the average penetration depth and is sensitive to the details of the disorder. These results indicate the need for caution when interpreting measurements of the penetration depth and its temperature dependence in systems which may be inhomogeneous

    NMR evidence for Friedel-like oscillations in the CuO chains of ortho-II YBa2_2Cu3_3O6.5_{6.5}

    Full text link
    Nuclear magnetic resonance (NMR) measurements of CuO chains of detwinned Ortho-II YBa2_2Cu3_3O6.5_{6.5} (YBCO6.5) single crystals reveal unusual and remarkable properties. The chain Cu resonance broadens significantly, but gradually, on cooling from room temperature. The lineshape and its temperature dependence are substantially different from that of a conventional spin/charge density wave (S/CDW) phase transition. Instead, the line broadening is attributed to small amplitude static spin and charge density oscillations with spatially varying amplitudes connected with the ends of the finite length chains. The influence of this CuO chain phenomenon is also clearly manifested in the plane Cu NMR.Comment: 4 pages, 3 figures, refereed articl
    • …
    corecore