19,635 research outputs found
Cryogenic masers
Various factors affecting the frequency stability of hydrogen masers are described and related to maser design parameters. The long-term frequency stability of a hydrogen maser is limited by the mechanical stability of the cavity, and the magnitudes of the wall relaxation, spin exchange, and recombination rates which affect the Q of the line. Magnetic resonance studies of hydrogen atoms at temperatures below 1 K and in containers coated with liquid helium films demonstrated that cryogenic masers may allow substantial improvements in all of these parameters. In particular the thermal expansion coefficients of most materials are negligible at 1 K. Spin exchange broadening is three orders of magnitude smaller at 1 K than at room temperature, and the recombination and wall relaxation rates are negligible at 0.52 K where the frequency shift due to the 4 He-coated walls of the container has a broad minimum as a function of temperature. Other advantages of the helium-cooled maser result from the high purity, homogeneity, and resilence of helium-film-coated walls and the natural compatibility of the apparatus with helium-cooled amplifiers
Recommended from our members
Who makes better use of technology for learning in D&T? Schools or university?
University teacher training departments have many functions in their role as Schools for Initial Teacher Education (ITE), these include accrediting qualified teacher status, teaching subject knowledge and pedagogy, and influencing change in a school subject's content and pedagogy. This paper discusses this latter area. It can be easy for teacher training in universities to become ivory towers, modelling new ideas for curriculum delivery and content in a 'bubble' away from the real world of the school classroom. A centre of design and technology (D&T) education at an English university has undertaken research-led developments in the use of web 2.0 technologies and technology enhanced learning (TEL), modelling how they can be used in the classroom. The research examined in this paper is the next stage of the centre's curriculum development to ensure the relevance of the university curriculum content and practices. Anecdotal evidence suggests that the use of TEL in secondary schools is inconsistent and sporadic with D&T teachers using TEL, with minimal awareness of research available, which could inform their practice. This impacts on the centre's trainee teachers as they begin teaching in schools during their final year of the course, with a possible unrealistic expectation of how TEL is used in schools, based on their university experiences
Omnidirectional joint Patent
Cord restraint system for pressure suit joint
Towards Quantum Gravity: A Framework for Probabilistic Theories with Non-Fixed Causal Structure
General relativity is a deterministic theory with non-fixed causal structure.
Quantum theory is a probabilistic theory with fixed causal structure. In this
paper we build a framework for probabilistic theories with non-fixed causal
structure. This combines the radical elements of general relativity and quantum
theory. The key idea in the construction is physical compression. A physical
theory relates quantities. Thus, if we specify a sufficiently large set of
quantities (this is the compressed set), we can calculate all the others. We
apply three levels of physical compression. First, we apply it locally to
quantities (actually probabilities) that might be measured in a particular
region of spacetime. Then we consider composite regions. We find that there is
a second level of physical compression for the composite region over and above
the first level physical compression for the component regions. Each
application of first and second level physical compression is quantified by a
matrix. We find that these matrices themselves are related by the physical
theory and can therefore be subject to compression. This is the third level of
physical compression. This third level of physical compression gives rise to a
new mathematical object which we call the causaloid. From the causaloid for a
particular physical theory we can calculate verything the physical theory can
calculate. This approach allows us to set up a framework for calculating
probabilistic correlations in data without imposing a fixed causal structure
(such as a background time). We show how to put quantum theory in this
framework (thus providing a new formulation of this theory). We indicate how
general relativity might be put into this framework and how the framework might
be used to construct a theory of quantum gravity.Comment: 23 pages. For special issue of Journal of Physics A entitled "The
quantum universe" in honour of Giancarlo Ghirard
An Intuitionistic Formula Hierarchy Based on High-School Identities
We revisit the notion of intuitionistic equivalence and formal proof
representations by adopting the view of formulas as exponential polynomials.
After observing that most of the invertible proof rules of intuitionistic
(minimal) propositional sequent calculi are formula (i.e. sequent) isomorphisms
corresponding to the high-school identities, we show that one can obtain a more
compact variant of a proof system, consisting of non-invertible proof rules
only, and where the invertible proof rules have been replaced by a formula
normalisation procedure.
Moreover, for certain proof systems such as the G4ip sequent calculus of
Vorob'ev, Hudelmaier, and Dyckhoff, it is even possible to see all of the
non-invertible proof rules as strict inequalities between exponential
polynomials; a careful combinatorial treatment is given in order to establish
this fact.
Finally, we extend the exponential polynomial analogy to the first-order
quantifiers, showing that it gives rise to an intuitionistic hierarchy of
formulas, resembling the classical arithmetical hierarchy, and the first one
that classifies formulas while preserving isomorphism
On the theory of magnetic field dependence of heat conductivity in dielectric in isotropic model
Phonon polarization in a magnetic field is analyzed in isotropic model. It is
shown, that at presence of spin-phonon interaction phonon possess circular
polari-zation which causes the appearance of heat flux component perpendicular
both to temperature gradient and magnetic field.Comment: 5 pages, 0 figure
An improved calculation of the isospin-symmetry-breaking corrections to superallowed Fermi beta decay
We report new shell-model calculations of the isospin-symmetry-breaking
correction to superallowed nuclear beta decay. The most important improvement
is the inclusion of core orbitals, which are demonstrated to have a significant
impact on the mismatch in the radial wave functions of the parent and daughter
states. We determine which core orbitals are important to include from an
examination of measured spectroscopic factors in single-nucleon pick-up
reactions. We also examine the new radiative-correction calculation by Marciano
and Sirlin and, by a simple reorganization, show that it is possible to
preserve the conventional separation into a nucleus-independent inner radiative
term and a nucleus-dependent outer term. We tabulate new values for the three
theoretical corrections for twenty superallowed transitions, including the
thirteen well-studied cases. With these new correction terms the corrected Ft
values for the thirteen cases are statistically consistent with one another and
the anomalousness of the 46V result disappears. These new calculations lead to
a lower average Ft value and a higher value of Vud. The sum of squares of the
top-row elements of the CKM matrix now agrees exactly with unitarity.Comment: 15 pages, 2 postscript figures, revtex
Flight evaluation of the STOL flare and landing during night operations
Simulated instrument approaches were made to Category 1 minimums followed by a visual landing on a 100 x 1700 ft STOL runway. Data were obtained for variations in the aircraft's flare response characteristics and control techniques and for different combinations of aircraft and runway lighting and a visual approach slope indication. With the complete aircraft and runway lighting and visual guidance no degradation in flying qualities or landing performance was observed compared to daylight operations. elimination of the touchdown zone floodlights or the aircraft landing lights led to somewhat greater pilot workload; however, the landing could still be accomplished successfully. Loss of both touchdown zone and aircraft landing lights led to a high workload situation and only a marginally adequate to inadequate landing capability
Diffusion of Nonequilibrium Quasiparticles in a Cuprate Superconductor
We report a transport study of nonequilibrium quasiparticles in a high-Tc
cuprate superconductor using the transient grating technique. Low-intensity
laser excitation (at photon energy 1.5 eV) was used to introduce a spatially
periodic density of quasiparticles into a high-quality untwinned single crystal
of YBa2Cu3O6.5. Probing the evolution of the initial density through space and
time yielded the quasiparticle diffusion coefficient, and both inelastic and
elastic scattering rates. The technique reported here is potentially applicable
to precision measurement of quasiparticle dynamics, not only in cuprate
superconductors, but in other electronic systems as well.Comment: 5 pages, 4 figure
Progress in the genetic analysis of Parkinson’s disease
The pace of genetic discovery in complex disease has accelerated exponentially over the last decade. Our fund of knowledge of the foundational genetics in disease has never been as great. There is a clear path forward to the resolution of the genetic architecture toward a point at which we will saturate the biological understanding of disease through genetics. This understanding continues to provide fundamental insights into disease biology and, with the advent of new data and methodologies, the path from gene to function is becoming clearer and cleaner. In this opinion piece, we discuss progress in the genetics of Parkinson disease. We explore what genetics has revealed thus far in the context of disease biology. We highlight mitophagy/autophagy, dopamine metabolism and the adaptive immune system. We try and link these findings together to give a holistic view of pathogenesis with the underlying theme that disease pathogenesis relates to a failure of damage response pathways. In the 1990s, Parkinson’s disease was regarded a non-genetic disorder. Since that time, however, a huge number of Mendelian loci and risk loci have been identified by positional cloning and by genome-wide association studies. In this review, it is not our intent to list each gene and locus and review their identification [Hernandez, D.G., Reed, X. and Singleton, A.B. (2016) Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance. J. Neurochem., 139 Suppl 1, 59–74] but rather to outline the pathogenetic mechanisms that these analyses are revealing and then, given the large number of loci already identified, to lay out what we hope future analyses may help us understand, both in terms of disease mechanisms and for risk prediction for the syndrome
- …