13,022 research outputs found
An improved calculation of the isospin-symmetry-breaking corrections to superallowed Fermi beta decay
We report new shell-model calculations of the isospin-symmetry-breaking
correction to superallowed nuclear beta decay. The most important improvement
is the inclusion of core orbitals, which are demonstrated to have a significant
impact on the mismatch in the radial wave functions of the parent and daughter
states. We determine which core orbitals are important to include from an
examination of measured spectroscopic factors in single-nucleon pick-up
reactions. We also examine the new radiative-correction calculation by Marciano
and Sirlin and, by a simple reorganization, show that it is possible to
preserve the conventional separation into a nucleus-independent inner radiative
term and a nucleus-dependent outer term. We tabulate new values for the three
theoretical corrections for twenty superallowed transitions, including the
thirteen well-studied cases. With these new correction terms the corrected Ft
values for the thirteen cases are statistically consistent with one another and
the anomalousness of the 46V result disappears. These new calculations lead to
a lower average Ft value and a higher value of Vud. The sum of squares of the
top-row elements of the CKM matrix now agrees exactly with unitarity.Comment: 15 pages, 2 postscript figures, revtex
Discriminating quantum-optical beam-splitter channels with number-diagonal signal states: Applications to quantum reading and target detection
We consider the problem of distinguishing, with minimum probability of error,
two optical beam-splitter channels with unequal complex-valued reflectivities
using general quantum probe states entangled over M signal and M' idler mode
pairs of which the signal modes are bounced off the beam splitter while the
idler modes are retained losslessly. We obtain a lower bound on the output
state fidelity valid for any pure input state. We define number-diagonal signal
(NDS) states to be input states whose density operator in the signal modes is
diagonal in the multimode number basis. For such input states, we derive series
formulas for the optimal error probability, the output state fidelity, and the
Chernoff-type upper bounds on the error probability. For the special cases of
quantum reading of a classical digital memory and target detection (for which
the reflectivities are real valued), we show that for a given input signal
photon probability distribution, the fidelity is minimized by the NDS states
with that distribution and that for a given average total signal energy N_s,
the fidelity is minimized by any multimode Fock state with N_s total signal
photons. For reading of an ideal memory, it is shown that Fock state inputs
minimize the Chernoff bound. For target detection under high-loss conditions, a
no-go result showing the lack of appreciable quantum advantage over coherent
state transmitters is derived. A comparison of the error probability
performance for quantum reading of number state and two-mode squeezed vacuum
state (or EPR state) transmitters relative to coherent state transmitters is
presented for various values of the reflectances. While the nonclassical states
in general perform better than the coherent state, the quantitative performance
gains differ depending on the values of the reflectances.Comment: 12 pages, 7 figures. This closely approximates the published version.
The major change from v2 is that Section IV has been re-organized, with a
no-go result for target detection under high loss conditions highlighted. The
last sentence of the abstract has been deleted to conform to the arXiv word
limit. Please see the PDF for the full abstrac
Gravitational Microlensing Near Caustics I: Folds
We study the local behavior of gravitational lensing near fold catastrophes.
Using a generic form for the lensing map near a fold, we determine the
observable properties of the lensed images, focusing on the case when the
individual images are unresolved, i.e., microlensing. Allowing for images not
associated with the fold, we derive analytic expressions for the photometric
and astrometric behavior near a generic fold caustic. We show how this form
reduces to the more familiar linear caustic, which lenses a nearby source into
two images which have equal magnification, opposite parity, and are equidistant
from the critical curve. In this case, the simplicity and high degree of
symmetry allows for the derivation of semi-analytic expressions for the
photometric and astrometric deviations in the presence of finite sources with
arbitrary surface brightness profiles. We use our results to derive some basic
properties of astrometric microlensing near folds, in particular we predict for
finite sources with uniform and limb darkening profiles, the detailed shape of
the astrometric curve as the source crosses a fold. We find that the
astrometric effects of limb darkening will be difficult to detect with the
currently planned accuracy of the Space Interferometry Mission. We verify our
results by numerically calculating the expected astrometric shift for the
photometrically well-covered Galactic binary lensing event OGLE-1999-BUL-23,
finding excellent agreement with our analytic expressions. Our results can be
applied to any lensing system with fold caustics, including Galactic binary
lenses and quasar microlensing.Comment: 37 pages, 7 figures. Revised version includes an expanded discussion
of applications. Accepted to ApJ, to appear in the August 1, 2002 issue
(v574
NMR evidence for Friedel-like oscillations in the CuO chains of ortho-II YBaCuO
Nuclear magnetic resonance (NMR) measurements of CuO chains of detwinned
Ortho-II YBaCuO (YBCO6.5) single crystals reveal unusual and
remarkable properties. The chain Cu resonance broadens significantly, but
gradually, on cooling from room temperature. The lineshape and its temperature
dependence are substantially different from that of a conventional spin/charge
density wave (S/CDW) phase transition. Instead, the line broadening is
attributed to small amplitude static spin and charge density oscillations with
spatially varying amplitudes connected with the ends of the finite length
chains. The influence of this CuO chain phenomenon is also clearly manifested
in the plane Cu NMR.Comment: 4 pages, 3 figures, refereed articl
A Spitzer Five-Band Analysis of the Jupiter-Sized Planet TrES-1
With an equilibrium temperature of 1200 K, TrES-1 is one of the coolest hot
Jupiters observed by {\Spitzer}. It was also the first planet discovered by any
transit survey and one of the first exoplanets from which thermal emission was
directly observed. We analyzed all {\Spitzer} eclipse and transit data for
TrES-1 and obtained its eclipse depths and brightness temperatures in the 3.6
{\micron} (0.083 % {\pm} 0.024 %, 1270 {\pm} 110 K), 4.5 {\micron} (0.094 %
{\pm} 0.024 %, 1126 {\pm} 90 K), 5.8 {\micron} (0.162 % {\pm} 0.042 %, 1205
{\pm} 130 K), 8.0 {\micron} (0.213 % {\pm} 0.042 %, 1190 {\pm} 130 K), and 16
{\micron} (0.33 % {\pm} 0.12 %, 1270 {\pm} 310 K) bands. The eclipse depths can
be explained, within 1 errors, by a standard atmospheric model with
solar abundance composition in chemical equilibrium, with or without a thermal
inversion. The combined analysis of the transit, eclipse, and radial-velocity
ephemerides gives an eccentricity , consistent
with a circular orbit. Since TrES-1's eclipses have low signal-to-noise ratios,
we implemented optimal photometry and differential-evolution Markov-chain Monte
Carlo (MCMC) algorithms in our Photometry for Orbits, Eclipses, and Transits
(POET) pipeline. Benefits include higher photometric precision and \sim10 times
faster MCMC convergence, with better exploration of the phase space and no
manual parameter tuning.Comment: 17 pages, Accepted for publication in Ap
The Effects of Strategic Nitrogen Fertiliser Application During the Cool Season on the Composition of a Perennial Ryegrass-White Clover Pasture in the Western Cape Province of South Africa
Application of fertiliser N to stimulate DM production of perennial ryegrass-white clover pastures during the cool season can be an important management tool. Application of fertiliser N should however maintain clover contents between 30 and 50 percent (Martin, 1960; Harris, 1994). The aim of the study was to develop a better understanding of the effect of a strategic N fertiliser application during the cool season on the grass-clover balance and to identify possible management guidelines that would maximise dry matter production without suppressing clover content to values lower than required to maintain the benefit of clover in the pasture
- …