4,737 research outputs found

    Biased Information Search in Homogeneous Groups: Confidence as a Moderator for the Effect of Anticipated Task Requirements

    Get PDF
    When searching for information, groups that are homogeneous regarding their members’ prediscussion decision preferences show a strong bias for information that supports rather than conflicts with the prevailing opinion (confirmation bias). The present research examined whether homogeneous groups blindly search for information confirming their beliefs irrespective of the anticipated task or whether they are sensitive to the usefulness of new information for this forthcoming task. Results of three experiments show that task sensitivity depends on the groups’ confidence in the correctness of their decision: Moderately confident groups displayed a strong confirmation bias when they anticipated having to give reasons for their decision but showed a balanced information search or even a disconfirmation bias (i.e., predominately seeking conflicting information) when they anticipated having to refute unterarguments. In contrast, highly confident groups demonstrated a strong confirmation bias independent of the anticipated task requirements

    Language Barriers in Health Care Settings: An Annotated Bibliography of Research Literature

    Get PDF
    Provides an overview of resources related to the prevalence, role, and effects of language barriers and access in health care

    Learning Mixtures of Gaussians in High Dimensions

    Full text link
    Efficiently learning mixture of Gaussians is a fundamental problem in statistics and learning theory. Given samples coming from a random one out of k Gaussian distributions in Rn, the learning problem asks to estimate the means and the covariance matrices of these Gaussians. This learning problem arises in many areas ranging from the natural sciences to the social sciences, and has also found many machine learning applications. Unfortunately, learning mixture of Gaussians is an information theoretically hard problem: in order to learn the parameters up to a reasonable accuracy, the number of samples required is exponential in the number of Gaussian components in the worst case. In this work, we show that provided we are in high enough dimensions, the class of Gaussian mixtures is learnable in its most general form under a smoothed analysis framework, where the parameters are randomly perturbed from an adversarial starting point. In particular, given samples from a mixture of Gaussians with randomly perturbed parameters, when n > {\Omega}(k^2), we give an algorithm that learns the parameters with polynomial running time and using polynomial number of samples. The central algorithmic ideas consist of new ways to decompose the moment tensor of the Gaussian mixture by exploiting its structural properties. The symmetries of this tensor are derived from the combinatorial structure of higher order moments of Gaussian distributions (sometimes referred to as Isserlis' theorem or Wick's theorem). We also develop new tools for bounding smallest singular values of structured random matrices, which could be useful in other smoothed analysis settings

    Momentum and Mass Fluxes in a Gas Confined between Periodically Structured Surfaces at Different Temperatures

    Full text link
    It is well known that in a gas-filled duct or channel along which a temperature gradient is applied, a thermal creep flow is created. Here we show that a mass and momentum flux can also be induced in a gas confined between two parallel structured surfaces at different temperatures, i.e. \textit{orthogonal} to the temperature gradient. We use both analytical and numerical methods to compute the resulting fluxes. The momentum flux assumes its maximum value in the free-molecular flow regime, the (normalized) mass flux in the transition flow regime. The discovered phenomena could find applications in novel methods for energy-conversion and thermal pumping of gases.Comment: 6 pages, 5 figures, updated fig.5, updated text for the numerical metho

    Private Multiplicative Weights Beyond Linear Queries

    Full text link
    A wide variety of fundamental data analyses in machine learning, such as linear and logistic regression, require minimizing a convex function defined by the data. Since the data may contain sensitive information about individuals, and these analyses can leak that sensitive information, it is important to be able to solve convex minimization in a privacy-preserving way. A series of recent results show how to accurately solve a single convex minimization problem in a differentially private manner. However, the same data is often analyzed repeatedly, and little is known about solving multiple convex minimization problems with differential privacy. For simpler data analyses, such as linear queries, there are remarkable differentially private algorithms such as the private multiplicative weights mechanism (Hardt and Rothblum, FOCS 2010) that accurately answer exponentially many distinct queries. In this work, we extend these results to the case of convex minimization and show how to give accurate and differentially private solutions to *exponentially many* convex minimization problems on a sensitive dataset

    Embedding Principal Component Analysis for Data Reductionin Structural Health Monitoring on Low-Cost IoT Gateways

    Get PDF
    Principal component analysis (PCA) is a powerful data reductionmethod for Structural Health Monitoring. However, its computa-tional cost and data memory footprint pose a significant challengewhen PCA has to run on limited capability embedded platformsin low-cost IoT gateways. This paper presents a memory-efficientparallel implementation of the streaming History PCA algorithm.On our dataset, it achieves 10x compression factor and 59x memoryreduction with less than 0.15 dB degradation in the reconstructedsignal-to-noise ratio (RSNR) compared to standard PCA. More-over, the algorithm benefits from parallelization on multiple cores,achieving a maximum speedup of 4.8x on Samsung ARTIK 710

    Foundation and empire : a critique of Hardt and Negri

    Get PDF
    In this article, Thompson complements recent critiques of Hardt and Negri's Empire (see Finn Bowring in Capital and Class, no. 83) using the tools of labour process theory to critique the political economy of Empire, and to note its unfortunate similarities to conventional theories of the knowledge economy
    corecore