28 research outputs found
Magnetic Photon Splitting: the S-Matrix Formulation in the Landau Representation
Calculations of reaction rates for the third-order QED process of photon
splitting in strong magnetic fields traditionally have employed either the
effective Lagrangian method or variants of Schwinger's proper-time technique.
Recently, Mentzel, Berg and Wunner (1994) presented an alternative derivation
via an S-matrix formulation in the Landau representation. Advantages of such a
formulation include the ability to compute rates near pair resonances above
pair threshold. This paper presents new developments of the Landau
representation formalism as applied to photon splitting, providing significant
advances beyond the work of Mentzel et al. by summing over the spin quantum
numbers of the electron propagators, and analytically integrating over the
component of momentum of the intermediate states that is parallel to field. The
ensuing tractable expressions for the scattering amplitudes are satisfyingly
compact, and of an appearance familiar to S-matrix theory applications. Such
developments can facilitate numerical computations of splitting considerably
both below and above pair threshold. Specializations to two regimes of interest
are obtained, namely the limit of highly supercritical fields and the domain
where photon energies are far inferior to that for the threshold of
single-photon pair creation. In particular, for the first time the
low-frequency amplitudes are simply expressed in terms of the Gamma function,
its integral and its derivatives. In addition, the equivalence of the
asymptotic forms in these two domains to extant results from effective
Lagrangian/proper-time formulations is demonstrated.Comment: 19 pages, 3 figures, REVTeX; accepted for publication in Phys. Rev.
The high energy X-ray probe (HEX-P): magnetars and other isolated neutron stars
© 2024 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The hard X-ray emission from magnetars and other isolated neutron stars remains under-explored. An instrument with higher sensitivity to hard X-rays is critical to understanding the physics of neutron star magnetospheres and also the relationship between magnetars and Fast Radio Bursts (FRBs). High sensitivity to hard X-rays is required to determine the number of magnetars with hard X-ray tails, and to track transient non-thermal emission from these sources for years post-outburst. This sensitivity would also enable previously impossible studies of the faint non-thermal emission from middle-aged rotation-powered pulsars (RPPs), and detailed phase-resolved spectroscopic studies of younger, bright RPPs. The High Energy X-ray Probe (HEX-P) is a probe-class mission concept that will combine high spatial resolution X-ray imaging ( < 5 arcsec half-power diameter (HPD) at 0.2â25 keV) and broad spectral coverage (0.2â80 keV) with a sensitivity superior to current facilities (including XMM-Newton and NuSTAR). HEX-P has the required timing resolution to perform follow-up observations of sources identified by other facilities and positively identify candidate pulsating neutron stars. Here we discuss how HEX-P is ideally suited to address important questions about the physics of magnetars and other isolated neutron stars.Peer reviewe
SGR J1550-5418 bursts detected with the Fermi Gamma-ray Burst Monitor during its most prolific activity
We have performed detailed temporal and time-integrated spectral analysis of
286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor
(GBM) in January 2009, resulting in the largest uniform sample of temporal and
spectral properties of SGR J1550-5418 bursts. We have used the combination of
broadband and high time-resolution data provided with GBM to perform
statistical studies for the source properties. We determine the durations,
emission times, duty cycles and rise times for all bursts, and find that they
are typical of SGR bursts. We explore various models in our spectral analysis,
and conclude that the spectra of SGR J1550-5418 bursts in the 8-200 keV band
are equally well described by optically thin thermal bremsstrahlung (OTTB), a
power law with an exponential cutoff (Comptonized model), and two black-body
functions (BB+BB). In the spectral fits with the Comptonized model we find a
mean power-law index of -0.92, close to the OTTB index of -1. We show that
there is an anti-correlation between the Comptonized Epeak and the burst
fluence and average flux. For the BB+BB fits we find that the fluences and
emission areas of the two blackbody functions are correlated. The
low-temperature BB has an emission area comparable to the neutron star surface
area, independent of the temperature, while the high-temperature blackbody has
a much smaller area and shows an anti-correlation between emission area and
temperature. We compare the properties of these bursts with bursts observed
from other SGR sources during extreme activations, and discuss the implications
of our results in the context of magnetar burst models.Comment: 13 pages, 10 figures, 2 tables; minor changes, ApJ in pres
Fermi observations of high-energy gamma-ray emission from GRB 080825C
The Fermi Gamma-ray Space Telescope (FGST) has opened a new high-energy
window in the study of Gamma-Ray Bursts (GRBs). Here we present a thorough
analysis of GRB 080825C, which triggered the Fermi Gamma-ray Burst Monitor
(GBM), and was the first firm detection of a GRB by the Fermi Large Area
Telescope (LAT). We discuss the LAT event selections, background estimation,
significance calculations, and localization for Fermi GRBs in general and GRB
080825C in particular. We show the results of temporal and time-resolved
spectral analysis of the GBM and LAT data. We also present some theoretical
interpretation of GRB 080825C observations as well as some common features
observed in other LAT GRBs.Comment: 18 pages, 7 figures. Accepted for publication in ApJ. Corresponding
authors: A. Bouvier, J. Granot, A.J. van der Hors
Fermi Observations of GRB 090902B: A Distinct Spectral Component in the Prompt and Delayed Emission
We report on the observation of the bright, long gamma-ray burst, GRB
090902B, by the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT)
instruments on-board the Fermi observatory. This was one of the brightest GRBs
to have been observed by the LAT, which detected several hundred photons during
the prompt phase. With a redshift of z = 1.822, this burst is among the most
luminous detected by Fermi. Time-resolved spectral analysis reveals a
significant power-law component in the LAT data that is distinct from the usual
Band model emission that is seen in the sub-MeV energy range. This power-law
component appears to extrapolate from the GeV range to the lowest energies and
is more intense than the Band component both below 50 keV and above 100
MeV. The Band component undergoes substantial spectral evolution over the
entire course of the burst, while the photon index of the power-law component
remains constant for most of the prompt phase, then hardens significantly
towards the end. After the prompt phase, power-law emission persists in the LAT
data as late as 1 ks post-trigger, with its flux declining as . The
LAT detected a photon with the highest energy so far measured from a GRB,
GeV. This event arrived 82 seconds after the GBM trigger
and 50 seconds after the prompt phase emission had ended in the GBM
band. We discuss the implications of these results for models of GRB emission
and for constraints on models of the Extragalactic Background Light.Comment: Accepted for publication in ApJ Letters. Contact Authors: Elisabetta
Bissaldi ([email protected]), James Chiang ([email protected]),
Francesco de Palma ([email protected]), Sheila McBreen
([email protected]
A limit on the variation of the speed of light arising from quantum gravity effects
A cornerstone of Einstein's special relativity is Lorentz invariance-the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l(Planck) approximate to 1.62 x 10(-33) cm or E-Planck = M(Planck)c(2) approximate to 1.22 x 10(19) GeV), at which quantum effects are expected to strongly affect the nature of space-time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy(1-7). Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in gamma-ray burst (GRB) light-curves(2). Here we report the detection of emission up to similar to 31GeV from the distant and short GRB090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E(Planck) on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l(Planck)/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories(3,6,7) in which the quantum nature of space-time on a very small scale linearly alters the speed of light.Peer reviewedSubmitted Versio
Detection of a spectral break in the extra hard component of GRB 090926A
âIn these times, during the rise in the popularity of institutional repositories, the Society does not forbid authors from depositing their work in such repositories. However, the AAS regards the deposit of scholarly work in such repositories to be a decision of the individual scholar, as long as the individual's actions respect the diligence of the journals and their reviewers.â Original article can be found at: http://iopscience.iop.org/ Copyright American Astronomical SocietyWe report on the observation of the bright, long gamma-ray burst,GRB 090926A, by the Gamma-ray Burst Monitor (GBM) and Large Area Tele-scope (LAT) instruments on board the Fermi Gamma-ray Space Telescope. GRB 090926A shares several features with other bright LAT bursts. In particular, it clearly shows a short spike in the light curve that is present in all detectors that see the burst, and this in turn suggests that there is a common region of emission across the entire Fermi energy range. In addition, while a separate high-energy power-law component has already been observed in other GRBs, here we report for the first time the detection with good significance of a high-energy spectral break (or cutoff) in this power-law component around 1.4 GeV in the time-integrated spectrum. If the spectral break is caused by opacity to electron-positron pair production within the source, then this observation allows us to compute the bulk Lorentz factor for the outflow, rather than a lower limit.Peer reviewe
X-Ray and Radio Observations of the Magnetar SGR J1935+2154 during Its 2014, 2015, and 2016 Outbursts
We analyzed broadband X-ray and radio data of the magnetar SGR J1935+2154 taken in the aftermath of its 2014, 2015, and 2016 outbursts. The source soft X-ray spectrum <10 keV is well described with a blackbody+power-law (BB+PL) or 2BB model during all three outbursts. Nuclear Spectroscopic Telescope Array observations revealed a hard X-ray tail, with a PL photon index Î = 0.9, extending up to 50 keV, with flux comparable to the one detected <10 keV. Imaging analysis of Chandra data did not reveal small-scale extended emission around the source. Following the outbursts, the total 0.5â10 keV flux from SGR J1935+2154 increased in concordance to its bursting activity, with the flux at activation onset increasing by a factor of ~7 following its strongest 2016 June outburst. A Swift/X-Ray Telescope observation taken 1.5 days prior to the onset of this outburst showed a flux level consistent with quiescence. We show that the flux increase is due to the PL or hot BB component, which increased by a factor of 25 compared to quiescence, while the cold BB component kT = 0.47 keV remained more or less constant. The 2014 and 2015 outbursts decayed quasi-exponentially with timescales of ~40 days, while the stronger 2016 May and June outbursts showed a quick short-term decay with timescales of about four days. Our Arecibo radio observations set the deepest limits on the radio emission from a magnetar, with a maximum flux density limit of 14 ÎŒJy for the 4.6 GHz observations and 7 ÎŒJy for the 1.4 GHz observations. We discuss these results in the framework of the current magnetar theoretical models