34 research outputs found

    The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/117132/1/ecy20119291818.pd

    A theoretical framework for the ecological role of three-dimensional structural diversity

    Get PDF
    The three-dimensional (3D) physical aspects of ecosystems are intrinsically linked to ecological processes. Here, we describe structural diversity as the volumetric capacity, physical arrangement, and identity/traits of biotic components in an ecosystem. Despite being recognized in earlier ecological studies, structural diversity has been largely overlooked due to an absence of not only a theoretical foundation but also effective measurement tools. We present a framework for conceptualizing structural diversity and suggest how to facilitate its broader incorporation into ecological theory and practice. We also discuss how the interplay of genetic and environmental factors underpin structural diversity, allowing for a potentially unique synthetic approach to explain ecosystem function. A practical approach is then proposed in which scientists can test the ecological role of structural diversity at biotic–environmental interfaces, along with examples of structural diversity research and future directions for integrating structural diversity into ecological theory and management across scales

    Integrating forest structural diversity measurement into ecological research

    Get PDF
    The measurement of forest structure has evolved steadily due to advances in technology, methodology, and theory. Such advances have greatly increased our capacity to describe key forest structural elements and resulted in a range of measurement approaches from traditional analog tools such as measurement tapes to highly derived and computationally intensive methods such as advanced remote sensing tools (e.g., lidar, radar). This assortment of measurement approaches results in structural metrics unique to each method, with the caveat that metrics may be biased or constrained by the measurement approach taken. While forest structural diversity (FSD) metrics foster novel research opportunities, understanding how they are measured or derived, limitations of the measurement approach taken, as well as their biological interpretation is crucial for proper application. We review the measurement of forest structure and structural diversity—an umbrella term that includes quantification of the distribution of functional and biotic components of forests. We consider how and where these approaches can be used, the role of technology in measuring structure, how measurement impacts extend beyond research, and current limitations and potential opportunities for future research

    Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.

    Get PDF
    We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients, 2,599 Lewy body dementia (LBD) patients, and 3,158 neurologically healthy subjects. Pathogenic expansions (range, 40-64 CAG repeats) in the huntingtin (HTT) gene were found in three (0.12%) patients diagnosed with pure FTD/ALS syndromes but were not present in the LBD or healthy cohorts. We replicated our findings in an independent collection of 3,674 FTD/ALS patients. Postmortem evaluations of two patients revealed the classical TDP-43 pathology of FTD/ALS, as well as huntingtin-positive, ubiquitin-positive aggregates in the frontal cortex. The neostriatal atrophy that pathologically defines Huntington's disease was absent in both cases. Our findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTD/ALS patients for HTT repeat expansions should be considered

    Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis

    Get PDF
    Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.Objective: To identify the genetic variants associated with juvenile ALS.Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism.Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members.Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway.Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.</p

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe

    Structural diversity as a predictor of ecosystem function

    No full text
    Biodiversity is believed to be closely related to ecosystem functions. However, the ability of existing biodiversity measures, such as species richness and phylogenetic diversity, to predict ecosystem functions remains elusive. Here, we propose a new vector of diversity metrics, structural diversity, which directly incorporates niche space in measuring ecosystem structure. We hypothesize that structural diversity will provide better predictive ability of key ecosystem functions than traditional biodiversity measures. Using the new lidar-derived canopy structural diversity metrics on 19 National Ecological Observation Network forested sites across the USA, we show that structural diversity is a better predictor of key ecosystem functions, such as productivity, energy, and nutrient dynamics than existing biodiversity measures (i.e. species richness and phylogenetic diversity). Similar to existing biodiversity measures, we found that the relationships between structural diversity and ecosystem functions are sensitive to environmental context. Our study indicates that structural diversity may be as good or a better predictor of ecosystem functions than species richness and phylogenetic diversity

    Data from: Characterizing forest structure variations across an intact tropical peat dome using field samplings and airborne LiDAR

    No full text
    Tropical peat swamp forests (PSF) are one of the most carbon dense ecosystems on the globe and are experiencing substantial natural and anthropogenic disturbances. In this study we combined direct field sampling and airborne LiDAR to empirically quantify forest structure and aboveground live biomass (AGB) across a large, intact tropical peat dome in Northwestern Borneo. Moving up a 4m elevational gradient, we observed increasing stem density but decreasing canopy height, crown area and crown roughness. These findings were consistent with hypotheses that nutrient and hydrological dynamics co-influence forest structure and stature of the canopy individuals, leading to reduced productivity towards the dome interior. Gap frequency as a function of gap size followed a power law distribution with a shape factor (?) of 1.76 ± 0.06. Ground-based and dome-wide estimates of AGB were 217.7 ± 28.3 Mg C ha-1, and 222.4 ± 24.4 Mg C ha-1, respectively, which were higher than previously reported AGB for PSF and tropical forests in general. However, dome-wide AGB estimates were based on height statistics and we found the coefficient of variation on canopy height was only 0.08, three times less than stem diameter measurements, suggesting LiDAR height metrics may not be a robust predictor of AGB in tall tropical forests with dense canopies. Our structural characterization of this ecosystem advances the understanding of the ecology of intact tropical peat domes and factors that influence biomass density and landscape-scale spatial variation. This ecological understanding is essential to improve estimates of forest carbon density and its spatial distribution in PSF and to effectively model the effects of disturbance and deforestation in these carbon dense ecosystems
    corecore