2,923 research outputs found
Shock heating in the nearby radio galaxy NGC 3801
Original article can be found at: http://www.journals.uchicago.edu/ApJ/--Copyright American Astronomical SocietyPeer reviewe
The Disturbed 17 keV Cluster Associated with the Radio Galaxy 3C 438
We present results from a {\em Chandra} observation of the cluster gas
associated with the FR II radio galaxy 3C 438. This radio galaxy is embedded
within a massive cluster with gas temperature 17 keV and bolometric
luminosity of 6 ergs s. It is unclear if this high
temperature represents the gravitational mass of the cluster, or if this is an
already high ( 11 keV) temperature cluster that has been heated
transiently. We detect a surface brightness discontinuity in the gas that
extends 600 kpc through the cluster. The radio galaxy 3C 438 is too small
(110 kpc across) and too weak to have created this large disturbance in
the gas. The discontinuity must be the result of either an extremely powerful
nuclear outburst or the major merger of two massive clusters. If the observed
features are the result of a nuclear outburst, it must be from an earlier epoch
of unusually energetic nuclear activity. However, the energy required
( ergs) to move the gas on the observed spatial scales strongly
supports the merger hypothesis. In either scenario, this is one of the most
extreme events in the local Universe.Comment: 13 pages, 4 figures, 1 table - accepted for publication in the
Astrophysical Journal Letter
A Chandra study of particle acceleration in the multiple hotspots of nearby radio galaxies
We present Chandra observations of a small sample of nearby classical double
radio galaxies which have more than one radio hotspot in at least one of their
lobes. The X-ray emission from the hotspots of these comparatively low-power
objects is expected to be synchrotron in origin, and therefore to provide
information about the locations of high-energy particle acceleration. In some
models of the relationship between the jet and hotspot the hotspots that are
not the current jet termination point should be detached from the energy supply
from the active nucleus and therefore not capable of accelerating particles to
high energies. We find that in fact some secondary hotspots are X-ray sources,
and thus probably locations for high-energy particle acceleration after the
initial jet termination shock. In detail, though, we show that the spatial
structures seen in X-ray are not consistent with naive expectations from a
simple shock model: the current locations of the acceleration of the
highest-energy observable particles in powerful radio galaxies need not be
coincident with the peaks of radio or even optical emission.Comment: Accepted for ApJ. 33 pages, 8 figures inc. 2 in colo
The linear bias of radio galaxies at z~0.3 via cosmic microwave background lensing
© 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical SocietyWe present a new measurement of the linear bias of radio loud active galactic nuclei (RLAGN) at and selected from the Best & Heckman (2012) sample, made by cross-correlating the RLAGN surface density with a map of the convergence of the weak lensing field of the cosmic microwave background from Planck. We detect the cross-power signal at a significance of and use the amplitude of the cross-power spectrum to estimate the linear bias of RLAGN, , corresponding to a typical dark matter halo mass of . When RLAGN associated with optically-selected clusters are removed we measure a lower bias corresponding to . These observations support the view that powerful RLAGN typically inhabit rich group and cluster environments.Peer reviewe
The Infrared Jet In 3C66B
We present images of infrared emission from the radio jet in 3C66B. Data at
three wavelengths (4.5, 6.75 and 14.5 microns) were obtained using the Infrared
Space Observatory. The 6.75 micron image clearly shows an extension aligned
with the radio structure. The jet was also detected in the 14.5 micron image,
but not at 4.5 micron. The radio-infrared-optical spectrum of the jet can be
interpreted as synchrotron emission from a population of electrons with a
high-energy break of 4e11 eV. We place upper limits on the IR flux from the
radio counter-jet. A symmetrical, relativistically beamed twin-jet structure is
consistent with our results if the jets consist of multiple components.Comment: 7 pages, 4 figure
Numerical modelling of the lobes of radio galaxies in cluster environments -- IV. Remnant radio galaxies
© 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.We examine the remnant phase of radio galaxies using three-dimensional hydrodynamical simulations of relativistic jets propagating through cluster environments. By switching the jets off once the lobes have reached a certain length we can study how the energy distribution between the lobes and shocked intra-cluster medium compares to that of an active source, as well as calculate synchrotron emission properties of the remnant sources. We see that as a result of disturbed cluster gas beginning to settle back into the initial cluster potential, streams of dense gas are pushed along the jet axis behind the remnant lobes, causing them to rise out of the cluster faster than they would due to buoyancy. This leads to increased adiabatic losses and a rapid dimming. The rapid decay of total flux density and surface brightness may explain the small number of remnant sources found in samples with a high flux density limit and may cause analytic models to overestimate the remnant fraction expected in sensitive surveys such as those now being carried out with LOFAR.Peer reviewedFinal Accepted Versio
SZ effect from radio-galaxy lobes: astrophysical and cosmological relevance
We derive the SZ effect arising in radio-galaxy lobes that are filled with
high-energy, non-thermal electrons. We provide here quantitative estimates for
SZ effect expected from the radio galaxy lobes by normalizing it to the
Inverse-Compton light, observed in the X-ray band, as produced by the
extrapolation to low energies of the radio emitting electron spectrum in these
radio lobes. We compute the spectral and spatial characteristics of the SZ
effect associated to the radio lobes of two distant radio galaxies (3C294 and
3C432) recently observed by Chandra, and we further discuss its detectability
with the next generation microwave and sub-mm experiments with arcsec and K sensitivity. We finally highlight the potential use of the SZE from
radio-galaxy lobes in the astrophysical and cosmological context.Comment: 8 pages, 5 figures, MNRAS in pres
Focusing on the extended X-ray emission in 3C 459 with a Chandra follow-up observation
6 pages, 4 figures. Reproduced with permission from Astronomy & Astrophysics. © 2019 ESO.Aims. We investigated the X-ray emission properties of the powerful radio galaxy 3C 459 revealed by a recent Chandra follow-up observation carried out in October 2014 with a 62 ks exposure. Methods. We performed an X-ray spectral analysis from a few selected regions on an image obtained from this observation and also compared the X-ray image with a 4.9 GHz VLA radio map available in the literature. Results. The dominant contribution comes from the radio core but significant X-ray emission is detected at larger angular separations from it, surrounding both radio jets and lobes. According to a scenario in which the extended X-ray emission is due to a plasma collisionally heated by jet-driven shocks and not magnetically dominated, we estimated its temperature to be ∼0.8 keV. This hot gas cocoon could be responsible for the radio depolarization observed in 3C 459, as recently proposed also for 3C 171 and 3C 305. On the other hand, our spectral analysis and the presence of an oxygen K edge, blueshifted at 1.23 keV, cannot exclude the possibility that the X-ray radiation originating from the inner regions of the radio galaxy could be intercepted by some outflow of absorbing material intervening along the line of sight, as already found in some BAL quasars.Peer reviewe
- …