137 research outputs found

    Development neurobiology of the stress response: multilevel regulation of corticotropin-releasing hormone function.

    Get PDF
    The ability to respond to adverse environmental cues is present in the neonatal and infant rat, although in an immature form: A number of laboratories have demonstrated stress-induced elevations of plasma glucocorticoids during the first two postnatal weeks. The limbic and hypothalamic mechanisms controlling the hormonal stress-response during this period are not fully understood and are, therefore, the focus of this report. Both hypothalamic corticotropin-releasing hormone (CRH) and vasopressin contribute to the release of ACTH from the pituitary in the adult. The relative roles of these two peptides during the neonatal (first week) and infant (second week) developmental period, are controversial. Evidence is presented that argues strongly for a major role for CRH. Up-regulation of hypothalamic CRH synthesis is a major component in the mature stress response. CRH-mRNA levels in the hypothalamic PVN are increased with cold stress by ninth postnatal day, but not during the first postnatal week. Further, down-regulation of CRH gene expression by glucocorticoids (GC) constitutes a critical "shut-down" mechanism for the hormonal stress response. In vivo and in vitro experiments supporting the "immaturity" of GC feedback on CRH synthesis during the first postnatal week are described. CRH-mediated neurotransmission, in both the endocrine and neuronal effector arms of the response to stress may be modulated via alteration of receptor number. The first member of the CRH receptor family, CRF1, probably mediates the neuroendocrine effects of CRH. The developmental profile of CRF1-mRNA reveals several distinctive spatial and temporal patterns. In the hippocampal CA1, CA2, and CA3a peak (300-600% adult values) CRF1-mRNA is found on postnatal day 6. In the amygdala, CRH receptor mRNA levels are maximal on the ninth postnatal day (at 180% of adult values). In cortex, a steady decline from high postnatal day 2 levels results in adult levels by 12. These findings demonstrate distinct, regional, age-specific control of the synthesis of CRF1. Receptor expression profile may provide important information regarding modulation of the age-specific roles of CRH in different regions. For example, a high ratio of hippocampus/amygdala receptors may preferentially activate negative hippocampal input to the hypothalamus during the neonatal period. Additionally, increased CRH receptor mRNA in the infant compared with the adult provides a mechanism for enhanced excitatory effect of the peptide at this age. In conclusion, increasing evidence exists for multiple control points of the early postnatal response and adaptation to stress. CRH synthesis in hypothalamus and amygdala, its sensitivity to GC feedback, and the abundance and distribution of at least two distinct CRH receptors in the limbic central nervous system and the pituitary are developmentally regulated. All serve as control points permitting an effective endocrine, autonomic, and behavioral response to stressful environmental cues

    11β-Hydroxysteroid Dehydrogenase type 1 is expressed in neutrophils and restrains an inflammatory response in male mice

    Get PDF
    Endogenous glucocorticoid action within cells is enhanced by prereceptor metabolism by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts intrinsically inert cortisone and 11-dehydrocorticosterone into active cortisol and corticosterone, respectively. 11β-HSD1 is highly expressed in immune cells elicited to the mouse peritoneum during thioglycollate-induced peritonitis and is down-regulated as the inflammation resolves. During inflammation, 11β-HSD1-deficient mice show enhanced recruitment of inflammatory cells and delayed acquisition of macrophage phagocytic capacity. However, the key cells in which 11β-HSD1 exerts these effects remain unknown. Here we have identified neutrophils (CD11b(+),Ly6G(+),7/4(+) cells) as the thioglycollate-recruited cells that most highly express 11β-HSD1 and show dynamic regulation of 11β-HSD1 in these cells during an inflammatory response. Flow cytometry showed high expression of 11β-HSD1 in peritoneal neutrophils early during inflammation, declining at later states. In contrast, expression in blood neutrophils continued to increase during inflammation. Ablation of monocytes/macrophages by treatment of CD11b-diphtheria-toxin receptor transgenic mice with diphtheria toxin prior to thioglycollate injection had no significant effect on 11β-HSD1 activity in peritoneal cells, consistent with neutrophils being the predominant 11β-HSD1 expressing cell type at this time. Similar to genetic deficiency in 11β-HSD1, acute inhibition of 11β-HSD1 activity during thioglycollate-induced peritonitis augmented inflammatory cell recruitment to the peritoneum. These data suggest that neutrophil 11β-HSD1 increases during inflammation to contribute to the restraining effect of glucocorticoids upon neutrophil-mediated inflammation. In human neutrophils, lipopolysaccharide activation increased 11β-HSD1 expression, suggesting the antiinflammatory effects of 11β-HSD1 in neutrophils may be conserved in humans

    Stress and breast cancer: from epidemiology to molecular biology

    Get PDF
    Stress exposure has been proposed to contribute to the etiology of breast cancer. However, the validity of this assertion and the possible mechanisms involved are not well established. Epidemiologic studies differ in their assessment of the relative contribution of stress to breast cancer risk, while physiological studies propose a clear connection but lack the knowledge of intracellular pathways involved. The present review aims to consolidate the findings from different fields of research (including epidemiology, physiology, and molecular biology) in order to present a comprehensive picture of what we know to date about the role of stress in breast cancer development

    Attending to warning signs of primary immunodeficiencies disease across the range of clinical practices

    Get PDF
    Purpose: Patients with primary immunodeficiency diseases (PIDD) may present with recurrent infections affecting different organs, organ-specific inflammation/autoimmunity, and also increased cancer risk, particularly hematopoietic malignancies. The diversity of PIDD and the wide age range over which these clinical occurrences become apparent often make the identification of patients difficult for physicians other than immunologists. The aim of this report is to develop a tool for educative programs targeted to specialists and applied by clinical immunologists. Methods: Considering the data from national surveys and clinical reports of experiences with specific PIDD patients, an evidence-based list of symptoms, signs, and corresponding laboratory tests were elaborated to help physicians other than immunologists look for PIDD. Results: Tables including main clinical manifestations, restricted immunological evaluation, and possible related diagnosis were organized for general practitioners and 5 specialties. Tables include information on specific warning signs of PIDD for pulmonologists, gastroenterologists, dermatologists, hematologists, and infectious disease specialists. Conclusions: This report provides clinical immunologists with an instrument they can use to introduce specialists in other areas of medicine to the warning signs of PIDD and increase early diagnosis. Educational programs should be developed attending the needs of each specialty.Fil: Costa Carvalho, Beatriz Tavares. Universidade Federal de São Paulo; BrasilFil: Sevciovic Grumach, Anete. Fundação ABC. Faculdade de Medicina; BrasilFil: Franco, José Luis. Universidad de Antioquia; ColombiaFil: Espinosa Rosales, Francisco Javier. Instituto Nacional de Pediatría. Unidad de Investigación en Inmunodeficiencias; MéxicoFil: Leiva, Lily E.. State University of Louisiana; Estados UnidosFil: King, Alejandra. Hospital de Niños Doctor Luis Calvo Mackenna. Unidad de Inmunología; ChileFil: Porras, Oscar. Hospital Nacional de Niños “Dr. Carlos Sáenz Herrera”; Costa RicaFil: Bezrodnik, Liliana. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Oleastro, Mathias. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Sorensen, Ricardo U.. State University of Louisiana; Estados Unidos. Universidad de La Frontera. Facultad de Medicina; MéxicoFil: Condino Neto, Antonio. Universidade de Sao Paulo; Brasi

    Neuroendocrine–immune disequilibrium and endometriosis: an interdisciplinary approach

    Get PDF
    Endometriosis, a chronic disease characterized by endometrial tissue located outside the uterine cavity, affects one fourth of young women and is associated with chronic pelvic pain and infertility. However, an in-depth understanding of the pathophysiology and effective treatment strategies of endometriosis is still largely elusive. Inadequate immune and neuroendocrine responses are significantly involved in the pathophysiology of endometriosis, and key findings are summarized in the present review. We discuss here the role of different immune mechanisms particularly adhesion molecules, protein–glycan interactions, and pro-angiogenic mediators in the development and progression of the disease. Finally, we introduce the concept of endometrial dissemination as result of a neuroendocrine-immune disequilibrium in response to high levels of perceived stress caused by cardinal clinical symptoms of endometriosis
    corecore