1,313 research outputs found
Formation of Low Threshold Voltage Microlasers
Vertical cavity surface emitting lasers (VCSELs) with threshold voltages of 1.7V have been fabricated. The resistance-area product in these new vertical cavity lasers is comparable to that of edge-emitting lasers, and threshold currents as low as 3 mA have been measured. Molecular beam epitaxy was used to grow n-type mirrors, a quantum well active region, and a heavily Be-doped p-contact. After contact definition and alloying, passive high-reflectivity mirrors were deposited by reactive sputter deposition of SiO2/Si3N4 to complete the laser cavity
Room-Temperature Continuous-Wave Vertical-Cavity Single-Quantum-Well Microlaser Diodes
Room-temperature continuous and pulsed lasing of vertical-cavity, single-quantum-well, surface-emitting microlasers is achieved at ~983nm. The active Ga[sub][0-8]In[sub][0-2]As single quantum well is 100 [angstroms] thick. These microlasers have the smallest gain medium volumes among lasers ever built. The entire laser structure is grown by molecular beam epitaxy and the microlasers are formed by chemically assisted ion-beam etching. The microlasers are 3-50-μm across. The minimum threshold currents are 1.1 mA (pulsed) and 1.5 mA (CW)
Ultranarrow conducting channels defined in GaAs-AlGaAs by low-energy ion damage
We have laterally patterned the narrowest conducting wires of two-dimensional electron gas (2DEG) material reported to date. The depletion induced by low-energy ion etching of GaAs-AlGaAs 2DEG structures was used to define narrow conducting channels. We employed high voltage electron beam lithography to create a range of channel geometries with widths as small as 75 nm. Using ion beam assisted etching by Cl2 gas and Ar ions with energies as low as 150 eV, conducting channels were defined by etching only through the thin GaAs cap layer. This slight etching is sufficient to entirely deplete the underlying material without necessitating exposure of the sidewalls that results in long lateral depletion lengths. At 4.2 K, without illumination, our narrowest wires retain a carrier density and mobility at least as high as that of the bulk 2DEG and exhibit quantized Hall effects. Aharonov–Bohm oscillations are seen in rings defined by this controlled etch-damage patterning. This patterning technique holds promise for creating one-dimensional conducting wires of even smaller sizes
The extraordinary Hall effect in coherent epitaxial tau (Mn,Ni)Al thin films on GaAs
Ultrathin coherent epitaxial films of ferromagnetic tau(Mn,Ni)0.60Al0.40 have been grown by molecular beam epitaxy on GaAs substrates. X-ray scattering and cross-sectional transmission electron microscopy measurements confirm that the c axis of the tetragonal tau unit cell is aligned normal to the (001) GaAs substrate. Measurements of the extraordinary Hall effect (EHE) show that the films are perpendicularly magnetized, exhibiting EHE resistivities saturating in the range of 3.3-7.1 muOMEGA-cm at room temperature. These values of EHE resistivity correspond to signals as large as +7 and -7 mV for the two magnetic states of the film with a measurement current of 1 mA. Switching between the two magnetic states is found to occur at distinct field values that depend on the previously applied maximum field. These observations suggest that the films are magnetically uniform. As such, tau(Mn,Ni)Al films may be an excellent medium for high-density storage of binary information
Epitaxial-tau(Mn,Ni)Al/(Al,Ga)As heterostructures: Magnetic and magneto-optic properties
Ferromagnetic Perpendicularly magnetized epitaxial thin films of tau (Mn,Ni)AI have been successfully grown on AlAs/GaAs heterostructures by molecular beam epitaxy. We have investigated the polar Kerr rotation and magnetization of tau MnAl and (Mn,Ni) Al as a function of Mn and Ni concentration. The largest polar Kerr rotation and remnant magnetization were obtained for Mn0.5Al0.5 thin films with values of 0.16-degrees and 224 emu/cm3, respectively. We observed that the Kerr rotation and magnetization remained constant with Ni additions up to about 12 at. % and subsequently decreased with further Ni additions. We discuss these results and one possible method of enhancing the Kerr rotation
Low-Voltage-Threshold Microlasers
We have reduced the voltage required for threshold in vertical cavity surface emitting lasers (VCSEL) to 1.7 V [l], the lowest yet reported for a CW-operating VCSEL [2,3]. Room-temperature current threshold was 3 mA pulsed, 4 mA CW. This advance in VCSEL technology leads to manageable heat dissipation for high packing densities. It was achieved in a structure which can be further optimized for high wallplug efficiency and high powers. Furthermore the thickness of the molecular beam epitaxially (MBE) grown portion of the structure was reduced by about 1.5 μm compared to conventional VCSELs, resulting in decreased MBE costs, significantly shallower processing depths and easier integration of VCSELs with transistors or other electronics. The (resistance x area) products of our VCSELs are nearly as low as those reported for high-power edge-emitting lasers. MBE was used to grown-doped Al_(0.15)Ga_(0.85)As/GaAs bottom mirror layers, the active region containing 3 GaAs quantum wells, and a 1-μm-thick p-doped top contact layer. 12 pairs of alternating SiO_2/Si_3N_4 layers formed a high-reflectivity mirror which completed the laser cavity. The reactive sputter-deposited mirrors produce reflectivities of 98.3% for 9.5 pairs [3]. Individual laser elements were defined by ion milling of mesas through the p-n junction, followed by planarization with SiO_2 to define the current path. Then, Au-Zn p-contacts were
deposited around the mesa tops and alloyed for current injection. A final ion-milling step was used to isolate individual contacts. In this way microlasers with diameters ranging from 7.5-25 μm were fabricated and measured
Colorimetric Measurement of Triglycerides Cannot Provide an Accurate Measure of Stored Fat Content in Drosophila
Drosophila melanogaster has recently emerged as a useful model system in which to study the genetic basis of regulation of fat storage. One of the most frequently used methods for evaluating the levels of stored fat (triglycerides) in flies is a coupled colorimetric assay available as a kit from several manufacturers. This is an aqueous-based enzymatic assay that is normally used for measurement of mammalian serum triglycerides, which are present in soluble lipoprotein complexes. In this short communication, we show that coupled colorimetric assay kits cannot accurately measure stored triglycerides in Drosophila. First, they fail to give accurate readings when tested on insoluble triglyceride mixtures with compositions like that of stored fat, or on fat extracted from flies with organic solvents. This is probably due to an inability of the lipase used in the kits to efficiently cleave off the glycerol head group from fat molecules in insoluble samples. Second, the measured final products of the kits are quinoneimines, which absorb visible light in the same wavelength range as Drosophila eye pigments. Thus, when extracts from crushed flies are assayed, much of the measured signal is actually due to eye pigments. Finally, the lipoprotein lipases used in colorimetric assays also cleave non-fat glycerides. The glycerol backbones liberated from all classes of glycerides are measured through the remaining reactions in the assay. As a consequence, when these assay kits are used to evaluate tissue extracts, the observed signal actually represents the amount of free glycerols together with all types of glycerides. For these reasons, findings obtained through use of coupled colorimetric assays on Drosophila samples must be interpreted with caution. We also show here that using thin-layer chromatography to measure stored triglycerides in flies eliminates all of these problems
Non-Volatile Memory Characteristics of Submicrometre Hall Structures Fabricated in Epitaxial Ferromagnetic MnAl Films on GaAs
Hall-effect structures with submicrometre linewidths (<0.3pm) have been fabricated in ferromagnetic thin films of Mn[sub 0.60]Al[sub 0.40] which are epitaxially grown on a GaAs substrate. The MnAl thin films exhibit a perpendicular remanent magnetisation and an extraordinary Hall effect with square hysteretic behaviour. The presence of two distinct stable readout states demonstrates the potential of using ultrasmall ferromagnetic volumes for electrically addressable, nonvolatile storage of digital information
Low-Threshold Electrically Pumps Vertical-Cavity Surface-Emitting Microlasers
Vertical-cavity electrically driven lasers with three GaInAs
quantum wells and diameters of several μm exhibit room-temperature pulsed current thresholds as low as 1.3mA with 958 nm output wavelength
Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization
The authors have designed, fabricated, and tested vertical-cavity surface-emitting lasers (VCSEL) with diameters ranging from 0.5 µm to >50 µm. Design issues, molecular beam epitaxial growth, fabrication, and lasing characteristics are discussed. The topics considered in fabrication of VCSELs are microlaser geometries; ion implementation and masks; ion beam etching packaging and arrays, and ultrasmall devices
- …
