15 research outputs found
Geometry and material effects in Casimir physics - Scattering theory
We give a comprehensive presentation of methods for calculating the Casimir
force to arbitrary accuracy, for any number of objects, arbitrary shapes,
susceptibility functions, and separations. The technique is applicable to
objects immersed in media other than vacuum, to nonzero temperatures, and to
spatial arrangements in which one object is enclosed in another. Our method
combines each object's classical electromagnetic scattering amplitude with
universal translation matrices, which convert between the bases used to
calculate scattering for each object, but are otherwise independent of the
details of the individual objects. This approach, which combines methods of
statistical physics and scattering theory, is well suited to analyze many
diverse phenomena. We illustrate its power and versatility by a number of
examples, which show how the interplay of geometry and material properties
helps to understand and control Casimir forces. We also examine whether
electrodynamic Casimir forces can lead to stable levitation. Neglecting
permeabilities, we prove that any equilibrium position of objects subject to
such forces is unstable if the permittivities of all objects are higher or
lower than that of the enveloping medium; the former being the generic case for
ordinary materials in vacuum.Comment: 44 pages, 11 figures, to appear in upcoming Lecture Notes in Physics
volume in Casimir physic
Recommended from our members
Detection of unusual mutation within the VP1 region of different re-isolates of poliovirus Sabin vaccine
In the present study, a genomic analysis of full VP1 sequence region of 15 clinical re-isolates (14 healthy vaccinees and one bone marrow tumor patient) was conducted, aiming to the identification of mutations and to the assessment of their impact on virus fitness, providing also insights relevant with the natural evolution of Sabin strains. Clinical re-isolates were analyzed by RT-PCR, sequencing and computational analysis. Some re-isolates were characterized by an unusual mutational pattern in which non-synonymous mutations outnumbered the synonymous ones. Furthermore, the majority of amino-acid substitutions were located in the capsid exterior, specifically in N-Ags, near N-Ags and in the north rim of the canyon. Also mutations, which are well-known determinants of attenuation, were identified. The results of this study propose that some re-isolates are characterized by an evolutionary pattern in which non-synonymous mutations with a direct phenotypic impact on viral fitness are fixed in viral genomes, in spite of synonymous ones with no phenotypic impact on viral fitness. Results of the present retrospective characterization of Sabin clinical re-isolates, based on the full VP1 sequence, suggest that vaccine-derived viruses may make their way through narrow breaches and may evolve into transmissible pathogens even in adequately immunized populations. For this reason increased poliovirus laboratory surveillance should be permanent and full VP1 sequence analysis should be conducted even in isolates originating from healthy vaccinees