23 research outputs found

    Stress-Reducing Effect of a 50 Hz Electric Field in Mice after Repeated Immobilizations, Electric Field Shields, and Polarization of the Electrodes

    No full text
    In BALB/c mice, immobilization-increased plasma glucocorticoid (GC) levels are suppressed by extremely low frequency (ELF) electric fields (EF). The aim of this study was to advance our understanding of the biological effects of ELF-EF, using its suppressive effect on the GC response. Mice were exposed to a 50 Hz EF of 10 kV/m via a parallel plate electrode and immobilized as needed. We examined the suppressive effect of ELF-EF on GC level change after repeated immobilizations, electrode polarization, and EF shielding of different portions of the mouse body parts. Additionally, bodyweight changes owing to stress and EF were examined. Immobilization-induced reduction in the plasma GC levels was reproduced in mice with stress and EF exposure, regardless of the stress episode numbers and electrode polarization. Furthermore, when the head of mice was shielded from the EF, the suppressive effect was possibly relatively lower than that when the abdomen was shielded. The bodyweight of the mice decreased for 3 days after immobilization before recovering; ELF-EF did not affect the bodyweight. Thus, to elicit the biological effects of the EF, not only the size of the area where the EF is distributed but also the area where the field is distributed should be important. The results also confirmed the stableness of the present experimental system, at least in terms of the stress-reducing effect. In addition, the restriction in this study caused weight loss, but ELF-EF was not considered to affect it. The results improve the understanding of the biological effect and medical applications of ELF-EF

    Stress-Reducing Effect of a 50 Hz Electric Field in Mice after Repeated Immobilizations, Electric Field Shields, and Polarization of the Electrodes

    No full text
    In BALB/c mice, immobilization-increased plasma glucocorticoid (GC) levels are suppressed by extremely low frequency (ELF) electric fields (EF). The aim of this study was to advance our understanding of the biological effects of ELF-EF, using its suppressive effect on the GC response. Mice were exposed to a 50 Hz EF of 10 kV/m via a parallel plate electrode and immobilized as needed. We examined the suppressive effect of ELF-EF on GC level change after repeated immobilizations, electrode polarization, and EF shielding of different portions of the mouse body parts. Additionally, bodyweight changes owing to stress and EF were examined. Immobilization-induced reduction in the plasma GC levels was reproduced in mice with stress and EF exposure, regardless of the stress episode numbers and electrode polarization. Furthermore, when the head of mice was shielded from the EF, the suppressive effect was possibly relatively lower than that when the abdomen was shielded. The bodyweight of the mice decreased for 3 days after immobilization before recovering; ELF-EF did not affect the bodyweight. Thus, to elicit the biological effects of the EF, not only the size of the area where the EF is distributed but also the area where the field is distributed should be important. The results also confirmed the stableness of the present experimental system, at least in terms of the stress-reducing effect. In addition, the restriction in this study caused weight loss, but ELF-EF was not considered to affect it. The results improve the understanding of the biological effect and medical applications of ELF-EF

    Suppression of Glucocorticoid Response in Stressed Mice Using 50 Hz Electric Field According to Immobilization Degree and Posture

    No full text
    Various studies on immobilized BALB/c mice to evaluate changes in hormone levels associated with stress responses have advanced the characterization of multiple aspects of the biological actions of extremely low-frequency (ELF) electric fields (EFs). In this study, we aimed to investigate the effect of mouse posture on its stress responses and evaluate the importance of adjusting the stress degree in the model. Mice were immobilized inside centrifuge tubes and exposed to an ELF EF generated between parallel plate electrodes. Blood was collected under anesthesia immediately after EF exposure, and plasma glucocorticoids were assayed. The inhibitory effects of EFs on glucocorticoid elevation by immobilization were reproduced regardless whether mice were in the abdominal or lateral recumbent position, for the EF vector delivered to mice through the sagittal or frontal plane. The effect of ELF EF was reproduced in moderately and mildly stressed mice but not in severely immobilized mice. Hence, adjusting the stress degree is critical to the reproducibility of the results for this model. We characterized the effects of ELF EF on homeostasis, including the stress response, and provided valuable information for the scientific evaluation of the biological risks and medical applications of ELF EF

    Effect of 50 Hz electric field in diacylglycerol acyltransferase mRNA expression level and plasma concentration of triacylglycerol, free fatty acid, phospholipid and total cholesterol

    Get PDF
    Abstract Background The effects of exposure to a 50 Hz electric field (EF) on plasma level of triacylglycerol, free fatty acids, total cholesterol and phospholipid and mRNA expression level of diacylglycerol acyltransferase (DGAT) 1 and 2 in liver and intestines from C57BL/6 J mice were studied. Methods The test was based on comparison between mice post treated with 50 Hz EF of 45 kV/m intensity for 30 min per day for 11 days or without EF. DGATs mRNA expression was analyzed by real-time quantitative polymerase chain reaction. Results There was no difference in the gene expression level of DGAT1 in liver and intestines. The DGAT2 gene expression level in liver derived from mice treated with EF was significantly lower than those in the control (P  Conclusion Exposure to 50 Hz EF decrease the plasma levels of total cholesterol and phospholipids, and downregulated DGAT2 mRNA expression in liver. The mechanisms for the effects of EF on lipid metabolism are not well understand yet, but altered DGAT2 activity may be involved.</p
    corecore