11,722 research outputs found
Macroscopic Expression Connecting the Rate of Energy Dissipation and Violation of the Fluctuation-Response Relation
A direct connection between the magnitude of the violation of the
fluctuation-response relation (FRR) and the rate of energy dissipation is
presented in terms of field variables of nonequilibrium systems. Here, we
consider the density field of a colloidal suspension either in a relaxation
process or in a nonequilibrium steady state driven by an external field. Using
a path-integral representation of the temporal evolution of the density field,
we find an equality that relates the magnitude of the violation of the FRR for
scalar and vector potentials of the velocity field to the rate of energy
dissipation for the entire system. Our result demonstrates that the violation
of the FRR for field variables captures the entropic component of the
dissipated free energy.Comment: 4 pages, a major reviso
Vector Manifestation and Fate of Vector Mesons in Dense Matter
We describe in-medium properties of hadrons in dense matter near chiral
restoration using a Wilsonian matching to QCD of an effective field theory with
hidden local symmetry at the chiral cutoff . We find that chiral
symmetry is restored in vector manifestation \`a la Harada and Yamawaki at a
critical matter density . We express the critical density in terms of QCD
correlators in dense matter at the matching scale. In a manner completely
analogous to what happens at the critical and at the critical
temperature , the vector meson mass is found to vanish (in the chiral
limit) at chiral restoration. This result provides a support for Brown-Rho
scaling predicted a decade ago.Comment: 14 pages, 2 figure
Diffusion in the Continuous-Imaginary-Time Quantum World-Line Monte Carlo Simulations with Extended Ensembles
The dynamics of samples in the continuous-imaginary-time quantum world-line
Monte Carlo simulations with extended ensembles are investigated. In the case
of a conventional flat ensemble on the one-dimensional quantum S=1 bi-quadratic
model, the asymmetric behavior of Monte Carlo samples appears in the diffusion
process in the space of the number of vertices. We prove that a local
diffusivity is asymptotically proportional to the number of vertices, and we
demonstrate the asymmetric behavior in the flat ensemble case. On the basis of
the asymptotic form, we propose the weight of an optimal ensemble as
, where denotes the number of vertices in a sample. It is shown
that the asymmetric behavior completely vanishes in the case of the proposed
ensemble on the one-dimensional quantum S=1 bi-quadratic model.Comment: 4 pages, 2 figures, update a referenc
Physical aspects of naked singularity explosion - How does a naked singularity explode? --
The behaviors of quantum stress tensor for the scalar field on the classical
background of spherical dust collapse is studied. In the previous works
diverging flux of quantum radiation was predicted. We use the exact expressions
in a 2D model formulated by Barve et al. Our present results show that the back
reaction does not become important during the semiclassical phase. The
appearance of the naked singularity would not be affected by this quantum field
radiation. To predict whether the naked singularity explosion occurs or not we
need the theory of quantum gravity. We depict the generation of the diverging
flux inside the collapsing star. The quantum energy is gathered around the
center positively. This would be converted to the diverging flux along the
Cauchy horizon. The ingoing negative flux crosses the Cauchy horizon. The
intensity of it is divergent only at the central naked singularity. This
diverging negative ingoing flux is balanced with the outgoing positive
diverging flux which propagates along the Cauchy horizon. After the replacement
of the naked singularity to the practical high density region the instantaneous
diverging radiation would change to more milder one with finite duration.Comment: 18 pages, 16 figure
- …