2 research outputs found

    Associations between Urinary Phthalates and Metabolic Syndrome in NHANES 2005-2010

    Get PDF
    Phthalates, commonly used to make plastics more durable, are a group of endocrine disrupting chemicals (EDC), with potential for adverse metabolic consequences. Associations between exposure to 13 phthalate metabolites and the prevalence of metabolic syndrome (MetS) were examined among 5,409 U.S adults &#8805; 18 years of age, who participated in the National Health and Nutrition Examination Survey from 2005-2010. MetS was assessed using clinical and questionnaire data. Odds Ratio (OR) and 95% Confidence Intervals (CI) adjusting for age, creatinine and key confounders, were estimated with multivariable logistic regression. Positive associations were observed between individual phthalate metabolites and MetS: (MCOP OR=1.31, 95% CI=1.40, 1.64, p-trend<.01; MCPP OR=1.39, 95% CI=1.09, 1.77, p-trend=0.01). In gender stratified analyses, findings with MCOPP and MCPP were restricted to women only. Phthalate metabolites may increase the prevalence of MetS; however, further studies are needed to better understand the role of EDCs in the development of MetS

    Racial and Sex Differences between Urinary Phthalates and Metabolic Syndrome among U.S. Adults: NHANES 2005–2014

    Get PDF
    Partial funding for Open Access provided by the UMD Libraries' Open Access Publishing Fund.Phthalates, plasticizers ubiquitous in household and personal care products, have been associated with metabolic disturbances. Despite the noted racial differences in phthalate exposure and the prevalence of metabolic syndrome (MetS), it remains unclear whether associations between phthalate metabolites and MetS vary by race and sex. A cross-sectional analysis was conducted among 10,017 adults from the National Health and Nutritional Examination Survey (2005–2014). Prevalence odds ratios (POR) and 95% confidence intervals (CIs) were estimated for the association between 11 urinary phthalate metabolites and MetS using weighted sex and race stratified multivariable logistic regression. Higher MCOP levels were significantly associated with increased odds of MetS among women but not men, and only remained significant among White women (POR Q4 vs. Q1 = 1.68, 95% CI: 1.24, 2.29; p-trend = 0.001). Similarly, the inverse association observed with MEHP among women, persisted among White women only (POR Q4 vs. Q1 = 0.53, 95% CI: 0.35, 0.80; p-trend = 0.003). However, SDEHP metabolites were associated with increased odds of MetS only among men, and this finding was limited to White men (POR Q4 vs. Q1 = 1.54, 95% CI: 1.01, 2.35; p-trend = 0.06). Among Black men, an inverse association was observed with higher MEP levels (POR Q4 vs. Q1 = 0.43, 95% CI: 0.24, 0.77; p-trend = 0.01). The findings suggest differential associations between phthalate metabolites and MetS by sex and race/ethnicity.https://doi.org/10.3390/ijerph1813687
    corecore