5 research outputs found

    Deep network with score level fusion and inference-based transfer learning to recognize leaf blight and fruit rot diseases of eggplant

    Get PDF
    Eggplant is a popular vegetable crop. Eggplant yields can be affected by various diseases. Automatic detection and recognition of diseases is an important step toward improving crop yields. In this paper, we used a two-stream deep fusion architecture, employing CNN-SVM and CNN-Softmax pipelines, along with an inference model to infer the disease classes. A dataset of 2284 images was sourced from primary (using a consumer RGB camera) and secondary sources (the internet). The dataset contained images of nine eggplant diseases. Experimental results show that the proposed method achieved better accuracy and lower false-positive results compared to other deep learning methods (such as VGG16, Inception V3, VGG 19, MobileNet, NasNetMobile, and ResNet50)

    Long - term conservation agriculture increases nitrogen use efficiency by crops, land equivalent ratio and soil carbon stock in a subtropical rice - based cropping system

    Get PDF
    Conservation Agriculture (CA) is still a relatively new approach for intensively cultivated (3 crops yr-1) rice-based cropping systems that produce high crop yield and amounts of residues annually. With the recent development of transplanting of rice into tilled strips on non-puddled soil, CA could become feasible for rice-based cropping patterns. However, the effect of increased retention of crop residues on crop response to nitrogen (N) fertilization rate in strip tilled systems with the transplanted rice and other crops grown in the annual rotation is yet to be determined. For nine years, we have examined the effects of soil disturbance levels - strip tillage (ST) and conventional tillage (CT), two residue retention levels –15% residue by height (low residue, LR) and 30% residue (high residue, HR) and five N rates (60%, 80%, 100%, 120%, and 140% of the recommended N fertilizer doses (RFD)) for a rice-wheat-mungbean cropping sequence. The 100% RFD was 75, 100 and 20 kg N ha-1for rice, wheat, and mungbean, respectively. Rice yields were comparable between the two tillage systems for up to year-6, wheat for up to year-3 but mungbean yield markedly increased in ST from year-1; however, the land equivalent ratio increased from year-1, principally because of higher mungbean yield. Introduction of ST increased land equivalent ratio by 26% relative to CT, N use efficiency and partial factor productivity. Nitrogen fertilizer demand for maximum yield in ST was increased by about 10% for rice and 5% for mungbean but decreased by 5% for wheat. Although fertilizer N demand had increased in ST system due to higher yield than CT, the N requirement declined by50–90% when the same yield goal is considered for ST as for CT. The soil organic carbon stock (0–15 cm) after 8 years increased from 21.5 to 30.5 t ha-1 due to the effect of ST plus high crop residue retention. Annual gross margin increased by 57% in ST over CT practice and 26% in HR over LR retention. In conclusion, after 9 years practicing CA with increased residue retention under strip tillage, the crops had higher N use efficiency, grain yield, land equivalent ratio and annual gross margin in the rice-wheat-mungbean cropping system while the N fertilizer requirement increased minimally

    Effect of Non-linear Co-efficient of a hexagonal PCF depending on effective area

    No full text
    A photonic crystal fiber (PCF) is an optical fiber that gets the waveguide characteristics from an array of very small and tightly separated air holes that run the length of the fiber rather than from a spatially changing glass structure. These air holes can be created by stacking capillary and/or solid tubes and implanting those into a bigger tube, or even by utilizing a preform containing holes. PCFs have a wide range of characteristics. One of these is the non-linear co-efficient. This property is influenced by factors such as effective area, pitch size, and so on. The overall goal of this study is to develop and improve the optical characteristics of PCFs and to design a hexagonal PCF for wideband near-zero dispersion-flattened features for dispersion managed applications. The non-linear co-efficient of the hexagonal PCF with respect to effective area is also calculated here

    A Single-Phase single switch high performance SEPIC AC-DC power converter

    No full text
    In this paper, a new single-phase single-ended primary-inductor converter (SEPIC) topology-based ac-dc converter is proposed pursuing only a singular switch for power conversion. The proposed converter exhibits higher input power factor, moderated total harmonic distortion (THD) in the input line current complying with IEEE-519 standards and high voltage gain compared to its traditional counterpart. In addition, the proposed topology displays promising performance under unexpected load introduction and load variations. Furthermore, the proposed converter causes a very low power loss comparing to its conventional topologies for the utilization of only a single switch to signal control. All the simulations have been performed in MATLAB/Simulink environment which upholds the performance of the topology and validates the philosophy of proposed converter

    Long-term conservation agriculture increases nitrogen use efficiency by crops, land equivalent ratio and soil carbon stock in a subtropical rice-based cropping system

    Get PDF
    Conservation Agriculture (CA) is still a relatively new approach for intensively cultivated (3 crops yr-1) rice-based cropping systems that produce high crop yield and amounts of residues annually. With the recent development of transplanting of rice into tilled strips on non-puddled soil, CA could become feasible for rice-based cropping patterns. However, the effect of increased retention of crop residues on crop response to nitrogen (N) fertilization rate in strip tilled systems with the transplanted rice and other crops grown in the annual rotation is yet to be determined. For nine years, we have examined the effects of soil disturbance levels - strip tillage (ST) and conventional tillage (CT), two residue retention levels –15% residue by height (low residue, LR) and 30% residue (high residue, HR) and five N rates (60%, 80%, 100%, 120%, and 140% of the recommended N fertilizer doses (RFD)) for a rice-wheat-mungbean cropping sequence. The 100% RFD was 75, 100 and 20 kg N ha-1for rice, wheat, and mungbean, respectively. Rice yields were comparable between the two tillage systems for up to year-6, wheat for up to year-3 but mungbean yield markedly increased in ST from year-1; however, the land equivalent ratio increased from year-1, principally because of higher mungbean yield. Introduction of ST increased land equivalent ratio by 26% relative to CT, N use efficiency and partial factor productivity. Nitrogen fertilizer demand for maximum yield in ST was increased by about 10% for rice and 5% for mungbean but decreased by 5% for wheat. Although fertilizer N demand had increased in ST system due to higher yield than CT, the N requirement declined by50–90% when the same yield goal is considered for ST as for CT. The soil organic carbon stock (0–15 cm) after 8 years increased from 21.5 to 30.5 t ha-1 due to the effect of ST plus high crop residue retention. Annual gross margin increased by 57% in ST over CT practice and 26% in HR over LR retention. In conclusion, after 9 years practicing CA with increased residue retention under strip tillage, the crops had higher N use efficiency, grain yield, land equivalent ratio and annual gross margin in the rice-wheat-mungbean cropping system while the N fertilizer requirement increased minimally
    corecore