2 research outputs found

    EEG-Based Processing and Classification Methodologies for Autism Spectrum Disorder: A Review

    Get PDF
    Autism Spectrum Disorder is a lifelong neurodevelopmental condition which affects social interaction, communication and behaviour of an individual. The symptoms are diverse with different levels of severity. Recent studies have revealed that early intervention is highly effective for improving the condition. However, current ASD diagnostic criteria are subjective which makes early diagnosis challenging, due to the unavailability of well-defined medical tests to diagnose ASD. Over the years, several objective measures utilizing abnormalities found in EEG signals and statistical analysis have been proposed. Machine learning based approaches provide more flexibility and have produced better results in ASD classification. This paper presents a survey of major EEG-based ASD classification approaches from 2010 to 2018, which adopt machine learning. The methodology is divided into four phases: EEG data collection, pre-processing, feature extraction and classification. This study explores different techniques and tools used for pre-processing, feature extraction and feature selection techniques, classification models and measures for evaluating the model. We analyze the strengths and weaknesses of the techniques and tools. Further, this study summarizes the ASD classification approaches and discusses the existing challenges, limitations and future directions

    Solar Irradiance Nowcasting for Virtual Power Plants Using Multimodal Long Short-Term Memory Networks

    Get PDF
    Publisher Copyright: © Copyright © 2021 Haputhanthri, De Silva, Sierla, Alahakoon, Nawaratne, Jennings and Vyatkin.The rapid penetration of photovoltaic generation reduces power grid inertia and increases the need for intelligent energy resources that can cope in real time with the imbalance between power generation and consumption. Virtual power plants are a technology for coordinating such resources and monetizing them, for example on electricity markets with real-time pricing or on frequency reserves markets. Accurate short-term photovoltaic generation forecasts are essential for such virtual power plants. Although significant research has been done on medium- and long-term photovoltaic generation forecasting, the short-term forecasting problem requires special attention to sudden fluctuations due to the high variability of cloud cover and related weather events. Solar irradiance nowcasting aims to resolve this variability by providing reliable short-term forecasts of the expected power generation capacity. Sky images captured in proximity to the photovoltaic panels are used to determine cloud behavior and solar intensity. This is a computationally challenging task for conventional computer vision techniques and only a handful of Artificial Intelligence (AI) methods have been proposed. In this paper, a novel multimodal approach is proposed based on two Long Short-Term Memory Networks (LSTM) that receives a temporal image modality of a stream of sky images, a temporal numerical modality of a time-series of past solar irradiance readings and cloud cover readings as inputs for irradiance nowcasting. The proposed nowcasting pipeline consists of a preprocessing module and an irradiance augmentation module that implements methods for cloud detection, Sun localization and mask generation. The complete approach was empirically evaluated on a real-world solar irradiance case study across the four seasons of the northern hemisphere, resulting in a mean improvement of 39% for multimodality.Peer reviewe
    corecore