3 research outputs found

    A Tutorial on Quantum Master Equations: Tips and tricks for quantum optics, quantum computing and beyond

    Full text link
    Quantum master equations are an invaluable tool to model the dynamics of a plethora of microscopic systems, ranging from quantum optics and quantum information processing, to energy and charge transport, electronic and nuclear spin resonance, photochemistry, and more. This tutorial offers a concise and pedagogical introduction to quantum master equations, accessible to a broad, cross-disciplinary audience. The reader is guided through the basics of quantum dynamics with hands-on examples that build up in complexity. The tutorial covers essential methods like the Lindblad master equation, Redfield relaxation, and Floquet theory, as well as techniques like Suzuki-Trotter expansion and numerical approaches for sparse solvers. These methods are illustrated with code snippets implemented in python and other languages, which can be used as a starting point for generalisation and more sophisticated implementations.Comment: 57 pages, 12 figures, 34 code example
    corecore