204 research outputs found

    MoEController: Instruction-based Arbitrary Image Manipulation with Mixture-of-Expert Controllers

    Full text link
    Diffusion-model-based text-guided image generation has recently made astounding progress, producing fascinating results in open-domain image manipulation tasks. Few models, however, currently have complete zero-shot capabilities for both global and local image editing due to the complexity and diversity of image manipulation tasks. In this work, we propose a method with a mixture-of-expert (MOE) controllers to align the text-guided capacity of diffusion models with different kinds of human instructions, enabling our model to handle various open-domain image manipulation tasks with natural language instructions. First, we use large language models (ChatGPT) and conditional image synthesis models (ControlNet) to generate a large number of global image transfer dataset in addition to the instruction-based local image editing dataset. Then, using an MOE technique and task-specific adaptation training on a large-scale dataset, our conditional diffusion model can edit images globally and locally. Extensive experiments demonstrate that our approach performs surprisingly well on various image manipulation tasks when dealing with open-domain images and arbitrary human instructions. Please refer to our project page: [https://oppo-mente-lab.github.io/moe_controller/]Comment: 5 pages,6 figure

    Subject-Diffusion:Open Domain Personalized Text-to-Image Generation without Test-time Fine-tuning

    Full text link
    Recent progress in personalized image generation using diffusion models has been significant. However, development in the area of open-domain and non-fine-tuning personalized image generation is proceeding rather slowly. In this paper, we propose Subject-Diffusion, a novel open-domain personalized image generation model that, in addition to not requiring test-time fine-tuning, also only requires a single reference image to support personalized generation of single- or multi-subject in any domain. Firstly, we construct an automatic data labeling tool and use the LAION-Aesthetics dataset to construct a large-scale dataset consisting of 76M images and their corresponding subject detection bounding boxes, segmentation masks and text descriptions. Secondly, we design a new unified framework that combines text and image semantics by incorporating coarse location and fine-grained reference image control to maximize subject fidelity and generalization. Furthermore, we also adopt an attention control mechanism to support multi-subject generation. Extensive qualitative and quantitative results demonstrate that our method outperforms other SOTA frameworks in single, multiple, and human customized image generation. Please refer to our \href{https://oppo-mente-lab.github.io/subject_diffusion/}{project page}Comment: 14 pages, 10 figure

    NCC: Natural Concurrency Control for Strictly Serializable Datastores by Avoiding the Timestamp-Inversion Pitfall

    Full text link
    Strictly serializable datastores greatly simplify the development of correct applications by providing strong consistency guarantees. However, existing techniques pay unnecessary costs for naturally consistent transactions, which arrive at servers in an order that is already strictly serializable. We find these transactions are prevalent in datacenter workloads. We exploit this natural arrival order by executing transaction requests with minimal costs while optimistically assuming they are naturally consistent, and then leverage a timestamp-based technique to efficiently verify if the execution is indeed consistent. In the process of designing such a timestamp-based technique, we identify a fundamental pitfall in relying on timestamps to provide strict serializability, and name it the timestamp-inversion pitfall. We find timestamp-inversion has affected several existing works. We present Natural Concurrency Control (NCC), a new concurrency control technique that guarantees strict serializability and ensures minimal costs -- i.e., one-round latency, lock-free, and non-blocking execution -- in the best (and common) case by leveraging natural consistency. NCC is enabled by three key components: non-blocking execution, decoupled response control, and timestamp-based consistency check. NCC avoids timestamp-inversion with a new technique: response timing control, and proposes two optimization techniques, asynchrony-aware timestamps and smart retry, to reduce false aborts. Moreover, NCC designs a specialized protocol for read-only transactions, which is the first to achieve the optimal best-case performance while ensuring strict serializability, without relying on synchronized clocks. Our evaluation shows that NCC outperforms state-of-the-art solutions by an order of magnitude on many workloads

    PEA-Diffusion: Parameter-Efficient Adapter with Knowledge Distillation in non-English Text-to-Image Generation

    Full text link
    Text-to-image diffusion models are well-known for their ability to generate realistic images based on textual prompts. However, the existing works have predominantly focused on English, lacking support for non-English text-to-image models. The most commonly used translation methods cannot solve the generation problem related to language culture, while training from scratch on a specific language dataset is prohibitively expensive. In this paper, we are inspired to propose a simple plug-and-play language transfer method based on knowledge distillation. All we need to do is train a lightweight MLP-like parameter-efficient adapter (PEA) with only 6M parameters under teacher knowledge distillation along with a small parallel data corpus. We are surprised to find that freezing the parameters of UNet can still achieve remarkable performance on the language-specific prompt evaluation set, demonstrating that PEA can stimulate the potential generation ability of the original UNet. Additionally, it closely approaches the performance of the English text-to-image model on a general prompt evaluation set. Furthermore, our adapter can be used as a plugin to achieve significant results in downstream tasks in cross-lingual text-to-image generation. Code will be available at: https://github.com/OPPO-Mente-Lab/PEA-DiffusionComment: 17 pages, 13 figure

    GammaE: Gamma Embeddings for Logical Queries on Knowledge Graphs

    Full text link
    Embedding knowledge graphs (KGs) for multi-hop logical reasoning is a challenging problem due to massive and complicated structures in many KGs. Recently, many promising works projected entities and queries into a geometric space to efficiently find answers. However, it remains challenging to model the negation and union operator. The negation operator has no strict boundaries, which generates overlapped embeddings and leads to obtaining ambiguous answers. An additional limitation is that the union operator is non-closure, which undermines the model to handle a series of union operators. To address these problems, we propose a novel probabilistic embedding model, namely Gamma Embeddings (GammaE), for encoding entities and queries to answer different types of FOL queries on KGs. We utilize the linear property and strong boundary support of the Gamma distribution to capture more features of entities and queries, which dramatically reduces model uncertainty. Furthermore, GammaE implements the Gamma mixture method to design the closed union operator. The performance of GammaE is validated on three large logical query datasets. Experimental results show that GammaE significantly outperforms state-of-the-art models on public benchmarks

    CompoNeRF: Text-guided Multi-object Compositional NeRF with Editable 3D Scene Layout

    Full text link
    Recent advances have shown promise in merging neural radiance fields (NeRFs) with pre-trained diffusion models for text-to-3D object generation. However, one enduring challenge is their inadequate capability to accurately parse and regenerate consistent multi-object environments. Specifically, these models encounter difficulties in accurately representing quantity and style prompted by multi-object texts, often resulting in a collapse of the rendering fidelity that fails to match the semantic intricacies. Moreover, amalgamating these elements into a coherent 3D scene is a substantial challenge, stemming from generic distribution inherent in diffusion models. To tackle the issue of 'guidance collapse' and enhance consistency, we propose a novel framework, dubbed CompoNeRF, by integrating an editable 3D scene layout with object specific and scene-wide guidance mechanisms. It initiates by interpreting a complex text into an editable 3D layout populated with multiple NeRFs, each paired with a corresponding subtext prompt for precise object depiction. Next, a tailored composition module seamlessly blends these NeRFs, promoting consistency, while the dual-level text guidance reduces ambiguity and boosts accuracy. Noticeably, the unique modularity of CompoNeRF permits NeRF decomposition. This enables flexible scene editing and recomposition into new scenes based on the edited layout or text prompts. Utilizing the open source Stable Diffusion model, CompoNeRF not only generates scenes with high fidelity but also paves the way for innovative multi-object composition using editable 3D layouts. Remarkably, our framework achieves up to a 54\% improvement in performance, as measured by the multi-view CLIP score metric. Code is available at https://github.com/hbai98/Componerf

    Prompt Space Optimizing Few-shot Reasoning Success with Large Language Models

    Full text link
    Prompt engineering is an essential technique for enhancing the abilities of large language models (LLMs) by providing explicit and specific instructions. It enables LLMs to excel in various tasks, such as arithmetic reasoning, question answering, summarization, relation extraction, machine translation, and sentiment analysis. Researchers have been actively exploring different prompt engineering strategies, such as Chain of Thought (CoT), Zero-CoT, and In-context learning. However, an unresolved problem arises from the fact that current approaches lack a solid theoretical foundation for determining optimal prompts. To address this issue in prompt engineering, we propose a new and effective approach called Prompt Space. Our methodology utilizes text embeddings to obtain basis vectors by matrix decomposition, and then constructs a space for representing all prompts. Prompt Space significantly outperforms state-of-the-art prompt paradigms on ten public reasoning benchmarks. Notably, without the help of the CoT method and the prompt "Let's think step by step", Prompt Space shows superior performance over the few-shot method. Overall, our approach provides a robust and fundamental theoretical framework for selecting simple and effective prompts. This advancement marks a significant step towards improving prompt engineering for a wide variety of applications in LLMs.Comment: Natural language processing (NLP
    • …
    corecore