73 research outputs found

    Learn Privacy-friendly Global Gaussian Processes in Federated Learning

    Get PDF
    In the era of big data, Federated Learning (FL) has drawn great attention as it naturally operates on distributed computational resources without the need of data warehousing. Similar to Distributed Learning (DL), FL distributes most computational tasks to end devices, but emphasizes more on preserving the privacy of clients. In other words, any FL algorithm should not send raw client data, if not the information about them, that could leak privacy. As a result, in typical scenarios where the FL framework applies, it is common for clients to have or obtain insufficient training data to produce an accurate model. To decide whether a prediction is trustworthy, models that provide not only point estimations, but also some notion of confidence are beneficial. Gaussian Process (GP) is a powerful Bayesian model that comes with naturally well-calibrated variance estimations. However, it is challenging to learn a stand-alone global GP since merging local kernels leads to privacy leakage. To preserve privacy, previous works that consider federated GPs avoid learning a global model by focusing on the personalized setting or learning an ensemble of local models. In this work, we present Federated Bayesian Neural Regression (FedBNR), an algorithm that learns a scalable stand-alone global federated GP that respects clients' privacy. We incorporate deep kernel learning and random features for scalability by defining a unifying random kernel. We show this random kernel can recover any stationary kernel and many non-stationary kernels. We then derive a principled approach of learning a global predictive model as if all client data is centralized. We also learn global kernels with knowledge distillation methods for non-identically and independently distributed (non-i.i.d.) clients. We design synthetic experiments to illustrate scenarios where our model has a clear advantage and provide insights into the rationales. Experiments are also conducted on real-world regression datasets and show statistically significant improvements compared to other federated GP models

    Bypassing the Simulator: Near-Optimal Adversarial Linear Contextual Bandits

    Full text link
    We consider the adversarial linear contextual bandit problem, where the loss vectors are selected fully adversarially and the per-round action set (i.e. the context) is drawn from a fixed distribution. Existing methods for this problem either require access to a simulator to generate free i.i.d. contexts, achieve a sub-optimal regret no better than O~(T56)\widetilde{O}(T^{\frac{5}{6}}), or are computationally inefficient. We greatly improve these results by achieving a regret of O~(T)\widetilde{O}(\sqrt{T}) without a simulator, while maintaining computational efficiency when the action set in each round is small. In the special case of sleeping bandits with adversarial loss and stochastic arm availability, our result answers affirmatively the open question by Saha et al. [2020] on whether there exists a polynomial-time algorithm with poly(d)Tpoly(d)\sqrt{T} regret. Our approach naturally handles the case where the loss is linear up to an additive misspecification error, and our regret shows near-optimal dependence on the magnitude of the error

    Towards Optimal Regret in Adversarial Linear MDPs with Bandit Feedback

    Full text link
    We study online reinforcement learning in linear Markov decision processes with adversarial losses and bandit feedback, without prior knowledge on transitions or access to simulators. We introduce two algorithms that achieve improved regret performance compared to existing approaches. The first algorithm, although computationally inefficient, ensures a regret of O~(K)\widetilde{\mathcal{O}}\left(\sqrt{K}\right), where KK is the number of episodes. This is the first result with the optimal KK dependence in the considered setting. The second algorithm, which is based on the policy optimization framework, guarantees a regret of O~(K34)\widetilde{\mathcal{O}}\left(K^{\frac{3}{4}} \right) and is computationally efficient. Both our results significantly improve over the state-of-the-art: a computationally inefficient algorithm by Kong et al. [2023] with O~(K45+poly(1λmin))\widetilde{\mathcal{O}}\left(K^{\frac{4}{5}}+poly\left(\frac{1}{\lambda_{\min}}\right) \right) regret, for some problem-dependent constant λmin\lambda_{\min} that can be arbitrarily close to zero, and a computationally efficient algorithm by Sherman et al. [2023b] with O~(K67)\widetilde{\mathcal{O}}\left(K^{\frac{6}{7}} \right) regret

    Effects of habitat usage on hypoxia avoidance behavior and exposure in reef-dependent marine coastal species

    Get PDF
    Reef habitat in coastal ecosystems is increasingly being augmented with artificial reefs (ARs) and is simultaneously experiencing increasing hypoxia due to eutrophication and climate change. Relatively little is known about the effects of hypoxia on organisms that use complex habitat arrangements and how the presence of highly preferred AR habitat can affect the exposure of organisms to low dissolved oxygen (DO). We performed two laboratory experiments that used video recording of behavioral movement to explore 1) habitat usage and staying duration of individuals continuously exposed to 3, 5, and 7 mg/L dissolved oxygen (DO) in a complex of multiple preferred and avoided habitat types, and 2) the impact of ARs on exposure to different DO concentrations under a series of two-way replicated choice experiments with or without AR placement on the low-oxygen side. Six common reef-dependent species found in the northeastern sea areas of China were used (i.e., rockfish Sebastes schlegelii and Hexagrammos otakii, filefish Thamnaconus modestus, flatfish Pseudopleuronectes yokohamae, sea cucumber Stichopus japonicus, and crab Charybdis japonica). Results showed that lower DO levels decreased the usage of preferred habitats of the sea cucumber and the habitat-generalist filefish but increased the habitat affinity to preferred habitat types for the two habitat-specific rockfishes. Low DO had no effect on the crab’s habitat usage. In the choice experiment, all three fish species avoided 1 mg/L, and the rockfish S. schlegelii continued to avoid the lower DO when given choices involving pairs of 3, 5, and 7 mg/L, while H. otakii and the flatfish showed less avoidance. The availability of ARs affected exposure to low DO for the habitat-preferring rockfishes but was not significant for the flatfish. This study provides information for assessing the ecological effects and potential for adaptation through behavioral movement for key reef-dependent species under the increasing overlap of ARs and hypoxia anticipated in the future

    Title2Event: Benchmarking Open Event Extraction with a Large-scale Chinese Title Dataset

    Full text link
    Event extraction (EE) is crucial to downstream tasks such as new aggregation and event knowledge graph construction. Most existing EE datasets manually define fixed event types and design specific schema for each of them, failing to cover diverse events emerging from the online text. Moreover, news titles, an important source of event mentions, have not gained enough attention in current EE research. In this paper, We present Title2Event, a large-scale sentence-level dataset benchmarking Open Event Extraction without restricting event types. Title2Event contains more than 42,000 news titles in 34 topics collected from Chinese web pages. To the best of our knowledge, it is currently the largest manually-annotated Chinese dataset for open event extraction. We further conduct experiments on Title2Event with different models and show that the characteristics of titles make it challenging for event extraction, addressing the significance of advanced study on this problem. The dataset and baseline codes are available at https://open-event-hub.github.io/title2event.Comment: EMNLP 202

    Infrared Imaging of Magnetic Octupole Domains in Non-collinear Antiferromagnets

    Full text link
    Magnetic structure plays a pivotal role in the functionality of antiferromagnets (AFMs), which not only can be employed to encode digital data but also yields novel phenomena. Despite its growing significance, visualizing the antiferromagnetic domain structure remains a challenge, particularly for non-collinear AFMs. Currently, the observation of magnetic domains in non-collinear antiferromagnetic materials is feasible only in Mn3_{3}Sn, underscoring the limitations of existing techniques that necessitate distinct methods for in-plane and out-of-plane magnetic domain imaging. In this study, we present a versatile method for imaging the antiferromagnetic domain structure in a series of non-collinear antiferromagnetic materials by utilizing the anomalous Ettingshausen effect (AEE), which resolves both the magnetic octupole moments parallel and perpendicular to the sample surface. Temperature modulation due to the AEE originating from different magnetic domains is measured by the lock-in thermography, revealing distinct behaviors of octupole domains in different antiferromagnets. This work delivers an efficient technique for the visualization of magnetic domains in non-collinear AFMs, which enables comprehensive study of the magnetization process at the microscopic level and paves the way for potential advancements in applications.Comment: National Science Review in pres
    corecore