65 research outputs found

    Joint Sensing and Communication Optimization in Target-Mounted STARS-Assisted Vehicular Networks: A MADRL Approach

    Full text link
    The utilization of integrated sensing and communication (ISAC) technology has the potential to enhance the communication performance of road side units (RSUs) through the active sensing of target vehicles. Furthermore, installing a simultaneous transmitting and reflecting surface (STARS) on the target vehicle can provide an extra boost to the reflection of the echo signal, thereby improving the communication quality for in-vehicle users. However, the design of this target-mounted STARS system exhibits significant challenges, such as limited information sharing and distributed STARS control. In this paper, we propose an end-to-end multi-agent deep reinforcement learning (MADRL) framework to tackle the challenges of joint sensing and communication optimization in the considered target-mounted STARS assisted vehicle networks. By deploying agents on both RSU and vehicle, the MADRL framework enables RSU and vehicle to perform beam prediction and STARS pre-configuration using their respective local information. To ensure efficient and stable learning for continuous decision-making, we employ the multi-agent soft actor critic (MASAC) algorithm and the multi-agent proximal policy optimization (MAPPO) algorithm on the proposed MADRL framework. Extensive experimental results confirm the effectiveness of our proposed MADRL framework in improving both sensing and communication performance through the utilization of target-mounted STARS. Finally, we conduct a comparative analysis and comparison of the two proposed algorithms under various environmental conditions

    Enable High-resolution, Real-time Ensemble Simulation and Data Assimilation of Flood Inundation using Distributed GPU Parallelization

    Full text link
    Numerical modeling of the intensity and evolution of flood events are affected by multiple sources of uncertainty such as precipitation and land surface conditions. To quantify and curb these uncertainties, an ensemble-based simulation and data assimilation model for pluvial flood inundation is constructed. The shallow water equation is decoupled in the x and y directions, and the inertial form of the Saint-Venant equation is chosen to realize fast computation. The probability distribution of the input and output factors is described using Monte Carlo samples. Subsequently, a particle filter is incorporated to enable the assimilation of hydrological observations and improve prediction accuracy. To achieve high-resolution, real-time ensemble simulation, heterogeneous computing technologies based on CUDA (compute unified device architecture) and a distributed storage multi-GPU (graphics processing unit) system are used. Multiple optimization skills are employed to ensure the parallel efficiency and scalability of the simulation program. Taking an urban area of Fuzhou, China as an example, a model with a 3-m spatial resolution and 4.0 million units is constructed, and 8 Tesla P100 GPUs are used for the parallel calculation of 96 model instances. Under these settings, the ensemble simulation of a 1-hour hydraulic process takes 2.0 minutes, which achieves a 2680 estimated speedup compared with a single-thread run on CPU. The calculation results indicate that the particle filter method effectively constrains simulation uncertainty while providing the confidence intervals of key hydrological elements such as streamflow, submerged area, and submerged water depth. The presented approaches show promising capabilities in handling the uncertainties in flood modeling as well as enhancing prediction efficiency

    The loss of plant functional groups increased arthropod diversity in an alpine meadow on the Tibetan Plateau

    Get PDF
    Plant species loss, driven by global changes and human activities, can have cascading effects on other trophic levels, such as arthropods, and alter the multitrophic structure of ecosystems. While the relationship between plant diversity and arthropod communities has been well-documented, few studies have explored the effects of species composition variation or plant functional groups. In this study, we conducted a long-term plant removal experiment to investigate the impact of plant functional group loss (specifically targeting tall grasses and sedges, as well as tall or short forbs) on arthropod diversity and their functional groups. Our findings revealed that the removal of plant functional groups resulted in increased arthropod richness, abundance and the exponential of Shannon entropy, contrary to the commonly observed positive correlation between plant diversity and consumer diversity. Furthermore, the removal of different plant groups had varying impacts on arthropod trophic levels. The removal of forbs had a more pronounced impact on herbivores compared to graminoids, but this impact did not consistently cascade to higher-trophic arthropods. Notably, the removal of short forbs had a more significant impact on predators, as evidenced by the increased richness, abundance, the exponential of Shannon entropy, inverse Simpson index and inverse Berger-Parker index of carnivores and abundance of omnivores, likely attributable to distinct underlying mechanisms. Our results highlight the importance of plant species identity in shaping arthropod communities in alpine grasslands. This study emphasizes the crucial role of high plant species diversity in controlling arthropods in natural grasslands, particularly in the context of plant diversity loss caused by global changes and human activities

    Analysis of landscape pattern vulnerability in Dasi river basin at the optimal scale

    No full text
    Abstract Since the reform and opening up in 1978, the Dasi River Basin within Jinan’s startup area from replacing old growth drivers with new ones (startup area) has experienced rapid urbanization and industrialization, and the landscape pattern has changed significantly, resulting in a series of eco-environmental problems. In order to more accurately identify the vulnerable areas of landscape pattern, understand their cause mechanism and changing laws, and provide a theoretical basis for the implementation of sustainable landscape pattern planning and management in the region. Four Landsat images of 2002, 2009, 2015 and 2020 were taken as data sources, and the optimal granularity of landscape pattern analysis was determined from the perspective of landscape level and class level by using the coefficient of variation method, granularity effect curve and information loss model, and the optimal amplitude was determined by using the grid method and semi-variance function. Then, the landscape vulnerability assessment model was constructed based on the optimal scale, and its spatiotemporal evolution characteristics and spatial autocorrelation were analyzed. The result showed that: (1) The optimal granularity of landscape pattern analysis in this study area was 80 m, and the optimal amplitude was 350 × 350 m. (2) During 2002–2020, the overall vulnerability of landscape pattern in the southern part of the study area showed an increasing trend, while that in the middle and northern parts showed a decreasing trend. (3) The mean values of the vulnerability index of the overall landscape pattern in 2002, 2009, 2015 and 2020 were 0.1479, 0.1483, 0.1562 and 0.1625, respectively, showing an increasing trend year by year. In terms of land use, during 2002–2020, the average vulnerability indices of forestland and built up land increased by 23.18% and 21.43%, respectively, followed by water body and bare land, increased by 12.18% and 9.52%, respectively, while the changes of cropland and grassland were relatively small, increasing by 5.36% and 5.65%, respectively. (4) During 2002–2020, the landscape pattern vulnerability showed a significant spatial positive correlation in terms of spatial distribution. The Low-Low areas were generally transferred from the southeastern and midwestern to the middle and northern, and the High–High areas were mainly transferred from the middle to the southern. Overall, the degree of the spatial agglomeration of the landscape pattern vulnerability showed an increasing trend

    Experiment on effect of different surfactants on formation of gas hydrate

    No full text
    The acceleration of surfactant to the rapid formation of gas hydrate is a hot topic of research. For the effect of the surfactant concentration on formation of gas hydrate is not clear at present, experiments for effect of various surfactants on formation of gas hydrate were conducted. Under the condition of constant volume, the tests were conducted to study the effect of various surfactants including SDS, Tween 80, Rhamnolipid and Triton X-100 and their concentrations on the formation of structure-H methane hydrate with large guest molecules, which was also compared with the formation process of hydrate without surfactant. In terms of the effect of surfactants with same concentration on shortening the induction time of natural gas hydrate, SDS > Rhamnolipid > Tween 80 > Triton X-100, and for the facilitation of gas storage, SDS > Tween 80 > Rhamnolipid > Triton X-100. In addition, with the increase of the concentration of surfactant, the promoting effect increases at first and then decreases. SDS and Rhamnolipid have good effect in facilitating the formation of gas hydrate. In particular, Rhamnolipid, as an environment-friendly biosurfactant, is used in the formation experiment of gas hydrate for the first time. It is capable of ensuring the high formation rate and simultaneously satisfying the requirements of environment protection. However, Triton X-100 is not applicable for the surfactant of structure-H hydrate
    • …
    corecore