2,815 research outputs found

    Graph Neural Networks with Generated Parameters for Relation Extraction

    Full text link
    Recently, progress has been made towards improving relational reasoning in machine learning field. Among existing models, graph neural networks (GNNs) is one of the most effective approaches for multi-hop relational reasoning. In fact, multi-hop relational reasoning is indispensable in many natural language processing tasks such as relation extraction. In this paper, we propose to generate the parameters of graph neural networks (GP-GNNs) according to natural language sentences, which enables GNNs to process relational reasoning on unstructured text inputs. We verify GP-GNNs in relation extraction from text. Experimental results on a human-annotated dataset and two distantly supervised datasets show that our model achieves significant improvements compared to baselines. We also perform a qualitative analysis to demonstrate that our model could discover more accurate relations by multi-hop relational reasoning

    Contrasting the Implicit Method in Incoherent Lagrangian and the Correction Map Method in Hamiltonian

    Full text link
    The equations of motion for a Lagrangian mainly refer to the acceleration equations, which can be obtained by the Euler--Lagrange equations. In the post-Newtonian Lagrangian form of general relativity, the Lagrangian systems can only maintain a certain post-Newtonian order and are incoherent Lagrangians since the higher-order terms are omitted. This truncation can cause some changes in the constant of motion. However, in celestial mechanics, Hamiltonians are more commonly used than Lagrangians. The conversion from Lagrangian to Hamiltonian can be achieved through the Legendre transformation. The coordinate momentum separable Hamiltonian can be computed by the symplectic algorithm, whereas the inseparable Hamiltonian can be used to compute the evolution of motion by the phase-space expansion method. Our recent work involves the design of a multi-factor correction map for the phase-space expansion method, known as the correction map method. In this paper, we compare the performance of the implicit algorithm in post-Newtonian Lagrangians and the correction map method in post-Newtonian Hamiltonians. Specifically, we investigate the extent to which both methods can uphold invariance of the motion's constants, such as energy conservation and angular momentum preservation. Ultimately, the results of numerical simulations demonstrate the superior performance of the correction map method, particularly with respect to angular momentum conservation

    Black hole scalarizations induced by parity violations

    Full text link
    It is well-known that parity symmetry is broken in the weak interaction but conserved for Einstein's general relativity and Maxwell's electromagnetic theory. Nevertheless, parity symmetry could also be violated in the gravitational/electromagnetic sectors if a fundamental scalar field couples to the parity-violating gravitational/electromagnetic curvature terms. Such parity-violating terms, which flip signs under reversed spatial directions, can inevitably lead to a negative effective mass squared for the scalar field perturbations near nonspherically symmetric black holes and thus are expected to trigger tachyonic instability. As illustrative examples, we show that the scalar field coupled to gravitational/electromagnetic Chern-Simons terms near a Kerr-Newmann spacetime can develop tachyonic instabilities, leading to equilibrium scalar field configurations in certain parameter regions of black holes. This instability, which is an indication of the black hole scalarization process, can occur in a broad class of nonspherically symmetric black holes and parity-violating theories.Comment: 9 pages, 3 figures, 1 tabl

    Photoproduction of e+ee^{+}e^{-} in peripheral isobar collisions

    Full text link
    We investigate the photoproduction of di-electrons in peripheral collisions of 4496Ru+4496Ru_{44}^{96}\textrm{Ru}+_{44}^{96}\textrm{Ru} and 4096Zr+4096Zr_{40}^{96}\textrm{Zr}+_{40}^{96}\textrm{Zr} at 200 GeV. With the charge and mass density distributions given by the calculation of the density functional theory, we calculate the spectra of transverse momentum, invariant mass and azimuthal angle for di-electrons at 40-80\% centrality. The ratios of these spectra in Ru+Ru collisions over to Zr+Zr collisions are shown to be smaller than (44/40)4(44/40)^{4} (the ratio of Z4Z^{4} for Ru and Zr) at low transverse momentum. The deviation arises from the different mass and charge density distributions in Ru and Zr. So the photoproduction of di-leptons in isobar collisions may provide a new way to probe the nuclear structure.Comment: 17 pages, 6 figure

    Re-examining the premise of isobaric collisions and a novel method to measure the chiral magnetic effect

    Get PDF
    In these proceedings we show that the premise of the isobaric and collisions to search for the chiral magnetic effect (CME) may not hold as originally anticipated due to large uncertainties in the isobaric nuclear structures. We demonstrate this using Woods-Saxon densities and the proton and neutron densities calculated by the density functional theory. Furthermore, a novel method is proposed to gauge background and possible CME contributions in the same system, intrinsically better than the isobaric collisions of two different systems. We illustrate the method with Monte Carlo Glauber and AMPT (A Multi-Phase Transport) simulations

    SDM-NET: Deep Generative Network for Structured Deformable Mesh

    Get PDF
    We introduce SDM-NET, a deep generative neural network which produces structured deformable meshes. Specifically, the network is trained to generate a spatial arrangement of closed, deformable mesh parts, which respect the global part structure of a shape collection, e.g., chairs, airplanes, etc. Our key observation is that while the overall structure of a 3D shape can be complex, the shape can usually be decomposed into a set of parts, each homeomorphic to a box, and the finer-scale geometry of the part can be recovered by deforming the box. The architecture of SDM-NET is that of a two-level variational autoencoder (VAE). At the part level, a PartVAE learns a deformable model of part geometries. At the structural level, we train a Structured Parts VAE (SP-VAE), which jointly learns the part structure of a shape collection and the part geometries, ensuring a coherence between global shape structure and surface details. Through extensive experiments and comparisons with the state-of-the-art deep generative models of shapes, we demonstrate the superiority of SDM-NET in generating meshes with visual quality, flexible topology, and meaningful structures, which benefit shape interpolation and other subsequently modeling tasks.Comment: Conditionally Accepted to Siggraph Asia 201

    TM-NET: Deep Generative Networks for Textured Meshes

    Get PDF
    We introduce TM-NET, a novel deep generative model for synthesizing textured meshes in a part-aware manner. Once trained, the network can generate novel textured meshes from scratch or predict textures for a given 3D mesh, without image guidance. Plausible and diverse textures can be generated for the same mesh part, while texture compatibility between parts in the same shape is achieved via conditional generation. Specifically, our method produces texture maps for individual shape parts, each as a deformable box, leading to a natural UV map with minimal distortion. The network separately embeds part geometry (via a PartVAE) and part texture (via a TextureVAE) into their respective latent spaces, so as to facilitate learning texture probability distributions conditioned on geometry. We introduce a conditional autoregressive model for texture generation, which can be conditioned on both part geometry and textures already generated for other parts to achieve texture compatibility. To produce high-frequency texture details, our TextureVAE operates in a high-dimensional latent space via dictionary-based vector quantization. We also exploit transparencies in the texture as an effective means to model complex shape structures including topological details. Extensive experiments demonstrate the plausibility, quality, and diversity of the textures and geometries generated by our network, while avoiding inconsistency issues that are common to novel view synthesis methods
    corecore