128 research outputs found
Charge-Trapping Devices Using Multilayered Dielectrics for Nonvolatile Memory Applications
Charge-trapping devices using multilayered dielectrics were studied for nonvolatile memory applications. The device structure is Al/Y2O3/Ta2O5/SiO2/Si (MYTOS). The MYTOS field effect transistors were fabricated using Ta2O5 as the charge storage layer and Y2O3 as the blocking layer. The electrical characteristics of memory window, program/erase characteristics, and data retention were examined. The memory window is about 1.6 V. Using a pulse voltage of 6 V, a threshold voltage shift of ~1 V can be achieved within 10 ns. The MYTOS transistors can retain a memory window of 0.81 V for 10 years
Transformer-based Variable-rate Image Compression with Region-of-interest Control
This paper proposes a transformer-based learned image compression system. It
is capable of achieving variable-rate compression with a single model while
supporting the region-of-interest (ROI) functionality. Inspired by prompt
tuning, we introduce prompt generation networks to condition the
transformer-based autoencoder of compression. Our prompt generation networks
generate content-adaptive tokens according to the input image, an ROI mask, and
a rate parameter. The separation of the ROI mask and the rate parameter allows
an intuitive way to achieve variable-rate and ROI coding simultaneously.
Extensive experiments validate the effectiveness of our proposed method and
confirm its superiority over the other competing methods.Comment: Accepted to IEEE ICIP 202
TransTIC: Transferring Transformer-based Image Compression from Human Visualization to Machine Perception
This work aims for transferring a Transformer-based image compression codec
from human vision to machine perception without fine-tuning the codec. We
propose a transferable Transformer-based image compression framework, termed
TransTIC. Inspired by visual prompt tuning, we propose an instance-specific
prompt generator to inject instance-specific prompts to the encoder and
task-specific prompts to the decoder. Extensive experiments show that our
proposed method is capable of transferring the codec to various machine tasks
and outshining the competing methods significantly. To our best knowledge, this
work is the first attempt to utilize prompting on the low-level image
compression task
Ray Tracing Simulation in Nonspherically Symmetric Atmosphere for GPS Radio Occultation
A three-dimensional ray tracing model with aiming algorithms for global positioning system (GPS) signal is proposed to make simulations conform to the realistic radio occultation (RO) signal propagation. The two aiming algorithms used in this study ensure the initial and end point ray trajectories are located in the prescribed region. In past studies, the ray tracing techniques applied to the RO signal simulation usually assumed a spherically symmetrical atmosphere for simplicity. The exact GPS and low earth orbit (LEO) satellite locations are not considered in the simulation. These two assumptions make the simulation unrealistic for GPS signal propagation in the RO technique. In the proposed model, the shape of the earth is assumed as an ellipse. The information from European Centre for Medium-Range Weather Forecasts (ECMWF) analysis is used to setup the atmosphere in the simulation. Two aiming algorithms are developed to determine the initial signal propagating direction to make the simulated signal start from the prescribed GPS satellite position and end in the close vicinity of the LEO satellite position. An ideal spherical symmetric atmospheric structure is used to verify the ray tracing model. The fractional difference between real and simulated refractivity results is less than 0.1%. Otherwise, the GPS and LEO satellite position in the Formosat-3/COSMIC observation and the ECMWF analysis, considering the earth¡¦s flattening, is also used to verify the aiming algorithms. All of the simulated signals end in close vicinity to the LEO satellite position in the simulation results
Charge-Trapping Devices Using Multilayered Dielectrics for Nonvolatile Memory Applications
Charge-trapping devices using multilayered dielectrics were studied for nonvolatile memory applications. The device structure is Al/Y 2 O 3 /Ta 2 O 5 /SiO 2 /Si (MYTOS). The MYTOS field effect transistors were fabricated using Ta 2 O 5 as the charge storage layer and Y 2 O 3 as the blocking layer. The electrical characteristics of memory window, program/erase characteristics, and data retention were examined. The memory window is about 1.6 V. Using a pulse voltage of 6 V, a threshold voltage shift of ∼1 V can be achieved within 10 ns. The MYTOS transistors can retain a memory window of 0.81 V for 10 years
Increasing Ceftriaxone Resistance in Salmonellae, Taiwan
In Taiwan, despite a substantial decline of Salmonella enterica serotype Choleraesuis infections, strains resistant to ciprofloxacin and ceftriaxone persist. A self-transferable blaCMY-2-harboring IncI1 plasmid was identified in S. enterica serotypes Choleraesuis, Typhimurium, Agona, and Enteritidis and contributed to the overall increase of ceftriaxone resistance in salmonellae
Novel artificial tricalcium phosphate and magnesium composite graft facilitates angiogenesis in bone healing
Bone grafting is the standard treatment for critical bone defects, but autologous grafts have limitations like donor site morbidity and limited availability, while commercial artificial grafts may have poor integration with surrounding bone tissue, leading to delayed healing. Magnesium deficiency negatively impacts angiogenesis and bone repair. Therefore, incorporating magnesium into a synthetic biomaterial could provide an excellent bone substitute. This study aims to evaluate the morphological, mechanical, and biological properties of a calcium phosphate cement (CPC) sponge composed of tetracalcium phosphate (TTCP) and monocalcium phosphate monohydrate (MCPM), which could serve as an excellent bone substitute by incorporating magnesium. This study aims to develop biomedical materials composed mainly of TTCP and MCPM powder, magnesium powder, and collagen. The materials were prepared using a wet-stirred mill and freeze-dryer methods. The particle size, composition, and microstructure of the materials were investigated. Finally, the biological properties of these materials, including 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay for biocompatibility, effects on bone cell differentiation by alkaline phosphatase (ALP) activity assay and tartrate-resistant acid phosphatase (TRAP) activity assay, and endothelial cell tube formation assay for angiogenesis, were evaluated as well. The data showed that the sub-micron CPC powder, composed of TTCP/MCPM in a 3.5:1 ratio, had a setting time shorter than 15 minutes and a compressive strength of 4.39±0.96 MPa. This reveals that the sub-micron CPC powder had an adequate setting time and mechanical strength. We found that the sub-micron CPC sponge containing magnesium had better biocompatibility, including increased proliferation and osteogenic induction effects without cytotoxicity. The CPC sponge containing magnesium also promoted angiogenesis. In summary, we introduced a novel CPC sponge, which had a similar property to human bone promoted the biological functions of bone cells, and could serve as a promising material used in bone regeneration for critical bone defects. [Abstract copyright: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
Eradication of intracellular Francisella tularensis in THP-1 human macrophages with a novel autophagy inducing agent
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
- …