51,876 research outputs found
Model Selection for High Dimensional Quadratic Regression via Regularization
Quadratic regression (QR) models naturally extend linear models by
considering interaction effects between the covariates. To conduct model
selection in QR, it is important to maintain the hierarchical model structure
between main effects and interaction effects. Existing regularization methods
generally achieve this goal by solving complex optimization problems, which
usually demands high computational cost and hence are not feasible for high
dimensional data. This paper focuses on scalable regularization methods for
model selection in high dimensional QR. We first consider two-stage
regularization methods and establish theoretical properties of the two-stage
LASSO. Then, a new regularization method, called Regularization Algorithm under
Marginality Principle (RAMP), is proposed to compute a hierarchy-preserving
regularization solution path efficiently. Both methods are further extended to
solve generalized QR models. Numerical results are also shown to demonstrate
performance of the methods.Comment: 37 pages, 1 figure with supplementary materia
Finite-Difference Time-Domain Study of Guided Modes in Nano-plasmonic Waveguides
A conformal dispersive finite-difference time-domain (FDTD) method is
developed for the study of one-dimensional (1-D) plasmonic waveguides formed by
an array of periodic infinite-long silver cylinders at optical frequencies. The
curved surfaces of circular and elliptical inclusions are modelled in
orthogonal FDTD grid using effective permittivities (EPs) and the material
frequency dispersion is taken into account using an auxiliary differential
equation (ADE) method. The proposed FDTD method does not introduce numerical
instability but it requires a fourth-order discretisation procedure. To the
authors' knowledge, it is the first time that the modelling of curved
structures using a conformal scheme is combined with the dispersive FDTD
method. The dispersion diagrams obtained using EPs and staircase approximations
are compared with those from the frequency domain embedding method. It is shown
that the dispersion diagram can be modified by adding additional elements or
changing geometry of inclusions. Numerical simulations of plasmonic waveguides
formed by seven elements show that row(s) of silver nanoscale cylinders can
guide the propagation of light due to the coupling of surface plasmons.Comment: 6 pages, 10 figures, accepted for publication, IEEE Trans. Antennas
Propaga
A coupling model for quasi-normal modes of photonic resonators
We develop a model for the coupling of quasi-normal modes in open photonic
systems consisting of two resonators. By expressing the modes of the coupled
system as a linear combination of the modes of the individual particles, we
obtain a generalized eigenvalue problem involving small size dense matrices. We
apply this technique to dielectric rod dimmer of rectangular cross section for
Transverse Electric (TE) polarization in a two-dimensional (2D) setup. The
results of our model show excellent agreement with full-wave finite element
simulations. We provide a convergence analysis, and a simplified model with a
few modes to study the influence of the relative position of the two
resonators. This model provides interesting physical insights on the coupling
scheme at stake in such systems and pave the way for systematic and efficient
design and optimization of resonances in more complicated systems, for
applications including sensing, antennae and spectral filtering
A Radial-Dependent Dispersive Finite-Difference Time-Domain Method for the Evaluation of Electromagnetic Cloaks
A radial-dependent dispersive finite-difference time-domain (FDTD) method is
proposed to simulate electromagnetic cloaking devices. The Drude dispersion
model is applied to model the electromagnetic characteristics of the cloaking
medium. Both lossless and lossy cloaking materials are examined and their
operating bandwidth is also investigated. It is demonstrated that the perfect
"invisibility" from electromagnetic cloaks is only available for lossless
metamaterials and within an extremely narrow frequency band.Comment: 18 pages, 10 figure
- …