3,808 research outputs found

    Properties of Noncommutative Renyi and Augustin Information

    Full text link
    The scaled R\'enyi information plays a significant role in evaluating the performance of information processing tasks by virtue of its connection to the error exponent analysis. In quantum information theory, there are three generalizations of the classical R\'enyi divergence---the Petz's, sandwiched, and log-Euclidean versions, that possess meaningful operational interpretation. However, these scaled noncommutative R\'enyi informations are much less explored compared with their classical counterpart, and lacking crucial properties hinders applications of these quantities to refined performance analysis. The goal of this paper is thus to analyze fundamental properties of scaled R\'enyi information from a noncommutative measure-theoretic perspective. Firstly, we prove the uniform equicontinuity for all three quantum versions of R\'enyi information, hence it yields the joint continuity of these quantities in the orders and priors. Secondly, we establish the concavity in the region of s(1,0)s\in(-1,0) for both Petz's and the sandwiched versions. This completes the open questions raised by Holevo [\href{https://ieeexplore.ieee.org/document/868501/}{\textit{IEEE Trans.~Inf.~Theory}, \textbf{46}(6):2256--2261, 2000}], Mosonyi and Ogawa [\href{https://doi.org/10.1007/s00220-017-2928-4/}{\textit{Commun.~Math.~Phys}, \textbf{355}(1):373--426, 2017}]. For the applications, we show that the strong converse exponent in classical-quantum channel coding satisfies a minimax identity. The established concavity is further employed to prove an entropic duality between classical data compression with quantum side information and classical-quantum channel coding, and a Fenchel duality in joint source-channel coding with quantum side information in the forthcoming papers

    Experimental Test of Tracking the King Problem

    Full text link
    In quantum theory, the retrodiction problem is not as clear as its classical counterpart because of the uncertainty principle of quantum mechanics. In classical physics, the measurement outcomes of the present state can be used directly for predicting the future events and inferring the past events which is known as retrodiction. However, as a probabilistic theory, quantum-mechanical retrodiction is a nontrivial problem that has been investigated for a long time, of which the Mean King Problem is one of the most extensively studied issues. Here, we present the first experimental test of a variant of the Mean King Problem, which has a more stringent regulation and is termed "Tracking the King". We demonstrate that Alice, by harnessing the shared entanglement and controlled-not gate, can successfully retrodict the choice of King's measurement without knowing any measurement outcome. Our results also provide a counterintuitive quantum communication to deliver information hidden in the choice of measurement.Comment: 16 pages, 5 figures, 2 table

    Angular Reconstruction of a Lead Scintillating-Fiber Sandwiched Electromagnetic Calorimeter

    Full text link
    A new method called Neighbor Cell Deposited Energy Ratio (NCDER) is proposed to reconstruct incidence position in a single layer for a 3-dimensional imaging electromagnetic calorimeter (ECAL).This method was applied to reconstruct the ECAL test beam data for the Alpha Magnetic Spectrometer-02 (AMS-02). The results show that this method can achieve an angular resolution of 7.36\pm 0.08 / \sqrt(E) \oplus 0.28 \pm 0.02 degree in the determination of the photons direction, which is much more precise than that obtained with the commonly-adopted Center of Gravity(COG) method (8.4 \pm 0.1 /sqrt(E) \oplus 0.8\pm0.3 degree). Furthermore, since it uses only the properties of electromagnetic showers, this new method could also be used for other type of fine grain sampling calorimeters.Comment: 6 pages, 8 figure
    corecore