74 research outputs found

    Physical Adversarial Attack meets Computer Vision: A Decade Survey

    Full text link
    Although Deep Neural Networks (DNNs) have achieved impressive results in computer vision, their exposed vulnerability to adversarial attacks remains a serious concern. A series of works has shown that by adding elaborate perturbations to images, DNNs could have catastrophic degradation in performance metrics. And this phenomenon does not only exist in the digital space but also in the physical space. Therefore, estimating the security of these DNNs-based systems is critical for safely deploying them in the real world, especially for security-critical applications, e.g., autonomous cars, video surveillance, and medical diagnosis. In this paper, we focus on physical adversarial attacks and provide a comprehensive survey of over 150 existing papers. We first clarify the concept of the physical adversarial attack and analyze its characteristics. Then, we define the adversarial medium, essential to perform attacks in the physical world. Next, we present the physical adversarial attack methods in task order: classification, detection, and re-identification, and introduce their performance in solving the trilemma: effectiveness, stealthiness, and robustness. In the end, we discuss the current challenges and potential future directions.Comment: 32 pages. Under Revie

    PBX3 and MEIS1 Cooperate in Hematopoietic Cells to Drive Acute Myeloid Leukemias Characterized by a Core Transcriptome of the MLL-Rearranged Disease

    Get PDF
    Overexpression of HOXA/MEIS1/PBX3 homeobox genes is the hallmark of mixed lineage leukemia (MLL)-rearranged acute myeloid leukemia (AML). HOXA9 and MEIS1 are considered to be the most critical targets of MLL fusions and their co-expression rapidly induces AML. MEIS1 and PBX3 are not individually able to transform cells and were therefore hypothesized to function as cofactors of HOXA9. However, in this study we demonstrate that co-expression of PBX3 and MEIS1 (PBX3/MEIS1), without ectopic expression of a HOX gene, is sufficient for transformation of normal mouse hematopoietic stem/progenitor cells in vitro. Moreover, PBX3/MEIS1 overexpression also caused AML in vivo, with a leukemic latency similar to that caused by forced expression of MLL-AF9, the most common form of MLL fusions. Furthermore, gene expression profiling of hematopoietic cells demonstrated that PBX3/MEIS1 overexpression, but not HOXA9/MEIS1, HOXA9/PBX3 or HOXA9 overexpression, recapitulated the MLL-fusion-mediated core transcriptome, particularly upregulation of the endogenous Hoxa genes. Disruption of the binding between MEIS1 and PBX3 diminished PBX3/MEIS1-mediated cell transformation and HOX gene upregulation. Collectively, our studies strongly implicate the PBX3/MEIS1 interaction as a driver of cell transformation and leukemogenesis, and suggest that this axis may play a critical role in the regulation of the core transcriptional programs activated in MLL-rearranged and HOX-overexpressing AML. Therefore, targeting the MEIS1/PBX3 interaction may represent a promising therapeutic strategy to treat these AML subtypes

    Intestinal segment and vitamin D3 concentration affect gene expression levels of calcium and phosphorus transporters in broiler chickens

    Get PDF
    Two experiments were conducted in this research. Experiment 1 investigated the spatial expression characteristics of calcium (Ca) and phosphorus (P) transporters in the duodenum, jejunum, and ileum of 21-day-old broilers provided with adequate nutrient feed. Experiment 2 evaluated the effects of dietary vitamin D3 (VD3) concentration (0, 125, 250, 500, 1,000, and 2,000 IU/kg) on growth performance, bone development, and gene expression levels of intestinal Ca and P transporters in 1–21-day-old broilers provided with the negative control diet without supplemental VD3. Results in experiment 1 showed that the mRNA levels of calcium-binding protein 28-kDa (CaBP-D28k), sodium-calcium exchanger 1 (NCX1), plasma membrane calcium ATPase 1b (PMCA1b), and IIb sodium-phosphate cotransporter (NaPi-IIb) were the highest in the broiler duodenum. By contrast, the mRNA levels of inorganic phosphate transporter 1 (PiT-1) and 2 (PiT-2) were the highest in the ileum. Results in experiment 2 showed that adding 125 IU/kg VD3 increased body weight gain (BWG), feed intake (FI), bone weight, and percentage and weight of Ca and P in the tibia and femur of 1–21-day-old broilers compared with the negative control diet (p < 0.05). The rise in dietary VD3 levels from 125 to 1,000 IU/kg further increased the BWG, FI, and weights of the bone, ash, Ca, and P (p < 0.05). No difference in growth rate and leg bone quality was noted in the broilers provided with 1,000 and 2,000 IU/kg VD3 (p > 0.05). Supplementation with 125–2,000 IU/kg VD3 increased the mRNA abundances of intestinal Ca and P transporters to varying degrees. The mRNA level of CaBP-D28k increased by 536, 1,161, and 28 folds in the duodenum, jejunum, and ileum, respectively, after adding 1,000 IU/kg VD3. The mRNA levels of other Ca and P transporters (PMCA1b, NCX1, NaPi-IIb, PiT-1, and PiT-2) increased by 0.57–1.74 folds by adding 1,000–2,000 IU/kg VD3. These data suggest that intestinal Ca and P transporters are mainly expressed in the duodenum of broilers. Moreover, the addition of VD3 stimulates the two mineral transporter transcription in broiler intestines

    Milk fat globule membrane promotes brain development in piglets by enhancing the connection of white matter fiber trace

    Get PDF
    IntroductionBrain development during infancy is crucial for later health and development. Although Milk Fat Globule Membrane (MFGM) has been demonstrated to enhance brain development, further investigation is needed to determine the optimal dose.MethodsIn this study, 80 piglets aged 2 days were randomly assigned to four groups: Control group, MFGM-L (1.74 g MFGM per 100 g diet), MFGM-M (4.64 g MFGM per 100 g diet), and MFGM-H (6.09 g MFGM per 100 g diet). Daily body weight and milk intake of the piglets were recorded until 31 days postnatal. Learning and memory abilities were evaluated using the spatial T-maze test on day 15. MRI analysis was conducted to assess functional and structural changes in brain tissues. Additionally, mRNA and protein expression of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NTF-3) in the hippocampus and prefrontal cortex were evaluated.ResultsThe results indicated that the MFGM supplemented diet significantly improved the accuracy of the piglets in the T-maze test, with the MFGM-L group exhibiting the best performance. MRI showed no volumetric differences in the gray and white matter between the groups. However, the fractional anisotropy in the left and right hippocampus of piglets in the MFGM-L group was significantly higher than in the other three groups. Furthermore, there was a strong correlation between the accuracy of the T-maze test and hippocampal fractional anisotropy.DiscussionThe MFGM supplemented diet also increased the expression of BDNF in the cerebral cortex. However, the changes in BDNF were not consistent with the results of the T-maze test. In conclusion, adding 1.74 g MFGM per 100 g diet can significantly improve neonatal piglets’ learning and memory abilities, potentially by enhancing the connection of white matter fiber bundles in the brain

    miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia

    Get PDF
    MicroRNAs are subject to precise regulation and have key roles in tumorigenesis. In contrast to the oncogenic role of miR-22 reported in myelodysplastic syndrome (MDS) and breast cancer, here we show that miR-22 is an essential anti-tumour gatekeeper in de novo acute myeloid leukaemia (AML) where it is significantly downregulated. Forced expression of miR-22 significantly suppresses leukaemic cell viability and growth in vitro, and substantially inhibits leukaemia development and maintenance in vivo. Mechanistically, miR-22 targets multiple oncogenes, including CRTC1, FLT3 and MYCBP, and thus represses the CREB and MYC pathways. The downregulation of miR-22 in AML is caused by TET1/GFI1/EZH2/SIN3A-mediated epigenetic repression and/or DNA copy-number loss. Furthermore, nanoparticles carrying miR-22 oligos significantly inhibit leukaemia progression in vivo. Together, our study uncovers a TET1/GFI1/EZH2/SIN3A/miR-22/CREB-MYC signalling circuit and thereby provides insights into epigenetic/genetic mechanisms underlying the pathogenesis of AML, and also highlights the clinical potential of miR-22-based AML therapy

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    A Finite State Machine Aided Pedestrian Navigation State Matching Algorithm

    No full text
    The automatic identification of pedestrian's navigation state is a difficult problem in pedestrian navigation research. It is important to improve the precision feedback and navigation performance of pedestrian navigation services, and few researches have been done in this field. This paper proposes a pedestrian navigation state matching algorithm based on finite state machine (FSM). The main idea of this method is to identify the pedestrian navigation state on the basis of recognizing pedestrian's actions. The pedestrian's action characteristics are recognized by using multiple sensor data collected by Google glass and mobile phone. Then, the pedestrian navigation states are divided into familiar, unfamiliar and lost state. The state transition model is established according to the FSM theory, and the pedestrian navigation state matching algorithm based on the model is designed. Finally, this algorithm is implemented, and experiments are conducted to validate its effectiveness. Experimental results show that the proposed algorithm can reach a good precision of recognizing the state transitions during pedestrian navigation process, and especially the accuracy of recognizing lost state achieves 90%

    RTP4, a Biomarker Associated with Diagnosing Pulmonary Tuberculosis and Pan-Cancer Analysis

    No full text
    Background. Pulmonary tuberculosis (PTB) is a global epidemic of infectious disease; the purpose of our study was to explore new potential biomarkers for the diagnosis of pulmonary tuberculosis and to use the biomarkers for further pan-cancer analysis. Methods. Four microarray gene expression sets were downloaded from the GEO public databases and conducted for further analysis. Healthy control (HC) samples and samples of pulmonary tuberculosis (PTB) were calculated with enrichment scores in folate biosynthesis pathways. The scores acted as a new phenotype combined with clinical information (control or PTB) for subsequent analysis. Weight gene coexpression network analysis (WGCNA) was used to seek the modules mostly related to PTB and folate biosynthesis in training sets. Twenty-nine coexistence genes were screened by intersecting the genes in the green-yellow module of GSE28623 and the brown module of GSE83456. We used the protein-protein interaction network analysis to narrow the gene range to search for hub genes. Then, we downloaded the unified and standardized pan-cancer data set from the UCSC database for correlations between biomarkers and prognosis and tumor stage differences. Results. Eventually, RTP4 was selected as a biomarker. To verify the reliability of this biomarker, an area under the ROC (AUC) was calculated in gene sets (GSE28623, GSE83456, and GSE34608). Lastly, to explore the difference in RTP4 expression before and after antituberculosis treatment, the GSE31348 gene set was enrolled to compare the expressions in weeks 0 and 26. The results showed significant differences between these two time points (p<0.001). RTP4 was significantly upregulated in the pulmonary tuberculosis group compared to the healthy control group in three gene sets and downregulated after antituberculosis therapy in one gene set. These results suggest that RTP4 can be used as a potential biomarker in diagnosing tuberculosis. The results of pan-cancer analysis showed that high expression of RTP4 in 4 tumor types was positively correlated with poor prognosis and high expression of RTP4 in 6 tumor types was negatively correlated with poor prognosis. We found significant differences in the expression of the RTP4 gene at different stages in 5 types of tumors. Conclusion. RTP4 might be a new potential biomarker for diagnosing pulmonary tuberculosis
    • …
    corecore