2,521 research outputs found

    Electromagnetic counterparts of high-frequency gravitational waves having additional polarization states: distinguishing and probing tensor-mode, vector-mode and scalar-mode gravitons

    Full text link
    GWs from extra dimensions, very early universe, and some high-energy astrophysical process, might have at most six polarizations: plus- and cross-type (tensor-mode gravitons), x-, y-type (vector-mode), and b-, l-type (scalar-mode). Peak or partial peak regions of some of such GWs are just distributed in GHz or higher frequency band, which would be optimal band for electromagnetic(EM) response. In this paper we investigate EM response to such high-frequency GWs(HFGWs) having additional polarizations. For the first time we address:(1)concrete forms of analytic solutions for perturbed EM fields caused by HFGWs having all six possible polarizations in background stable EM fields; (2)perturbed EM signals of HFGWs with additional polarizations in three-dimensional-synchro-resonance-system(3DSR system) and in galactic-extragalactic background EM fields. These perturbative EM fields are actually EM counterparts of HFGWs, and such results provide a novel way to simultaneously distinguish and display all possible six polarizations. It is also shown: (i)In EM response, pure cross-, x-type and pure y-type polarizations can independently generate perturbative photon fluxes(PPFs, signals), while plus-, b- and l-type polarizations produce PPFs in different combination states. (ii) All such six polarizations have separability and detectability. (iii)In EM response to HFGWs from extra-dimensions, distinguishing and displaying different polarizations would be quite possible due to their very high frequencies, large energy densities and special properties of spectrum. (iv)Detection band(10^8 to 10^12 Hz or higher) of PPFs by 3DSR and observation range(7*10^7 to 3*10^9 Hz) of PPFs by FAST (Five-hundred-meter-Aperture-Spherical Telescope, China), have a certain overlapping property, so their coincidence experiments will have high complementarity.Comment: 27 pages, 16 figure

    Distinguishing thermal histories of dark matter from structure formation

    Full text link
    It is important to understand the implications of current observational constraints and potential signatures on the thermal history of dark matter. In this paper, we build the connection between the present-day velocities and the production mechanism of dark matter and find that the current observation on structure formation can be imposed to constrain the decoupling temperatures and the phase-space distribution of dark matter. We further explore the potential of distinguishing different possible thermal histories of dark matter with hypothetical future observational data. Using the freeze-in/-out scenarios as templates, we find that future precision data may uniquely identify the allowed parameter spaces for freeze-in and freeze-out, or even completely rule out one of the scenarios. This method can be more generally applied to other scenarios.Comment: 49 pages, 13 figures, 1 tabl

    4-(4-Nitro­benzene­sulfonamido)pyri­dinium chloride

    Get PDF
    In the title compound, C11H10N3O4S+·Cl−, the benzene ring makes an angle of 89.2 (1)° with the pyridinium ring. The dihedral angle between the nitro group and the benzene ring is 15.7 (1)°. The crystal structure is stabilized by N—H⋯Cl hydrogen bonds
    corecore