3,159 research outputs found

    Vacuum induced transparency and photon number resolved Autler-Townes splitting in a three-level system

    Full text link
    We study the absorption spectrum of a probe field by a {\Lambda}-type three-level system, which is coupled to a quantized control field through the two upper energy levels. The probe field is applied to the ground and the second excited states. When the quantized control field is in vacuum, we derive a threshold condition to discern vacuum induced transparency (VIT) and vacuum induced Autler- Townes splitting (ATS). We also find that the parameter change from VIT to vacuum induced ATS is very similar to that from broken PT symmetry to PT symmetry. Moreover, we find the photon number resolved spectrum in the parameter regime of vacuum induced ATS when the mean photon number of the quantized control field is changed from zero (vacuum) to a finite number. However, there is no photon number resolved spectrum in the parameter regime of VIT even that the quantized control field contains the finite number of photons. Finally, we further discuss possible experimental realization

    New Generalizations of Cosmography Inspired by the Pade Approximant

    Get PDF
    The current accelerated expansion of the universe has been one of the most important fields in physics and astronomy since 1998. Many cosmological models have been proposed in the literature to explain this mysterious phenomenon. Since the nature and cause of the cosmic acceleration are still unknown, model-independent approaches to study the evolution of the universe are welcome. One of the powerful model-independent approaches is the so-called cosmography. It only relies on the cosmological principle, without postulating any underlying theoretical model. However, there are several shortcomings in the usual cosmography. For instance, it is plagued with the problem of divergence (or an unacceptably large error), and it fails to predict the future evolution of the universe. In the present work, we try to overcome or at least alleviate these problems, and we propose two new generalizations of cosmography inspired by the Pad\'e approximant. One is to directly parameterize the luminosity distance based on the Pad\'e approximant, while the other is to generalize cosmography with respect to a so-called yβy_\beta-shift yβ=z/(1+βz)y_\beta=z/(1+\beta z), which is also inspired by the Pad\'e approximant. Then, we confront them with the observational data with the help of the Markov chain Monte Carlo (MCMC) code emcee, and find that they work fairly well.Comment: 16 pages, 3 tables, 5 figures, revtex4; v2: discussions added, Eur. Phys. J. C in press; v3: published versio
    • …
    corecore