1,203 research outputs found

    Interference-Mitigating Waveform Design for Next-Generation Wireless Systems

    No full text
    A brief historical perspective of the evolution of waveform designs employed in consecutive generations of wireless communications systems is provided, highlighting the range of often conflicting demands on the various waveform characteristics. As the culmination of recent advances in the field the underlying benefits of various Multiple Input Multiple Output (MIMO) schemes are highlighted and exemplified. As an integral part of the appropriate waveform design, cognizance is given to the particular choice of the duplexing scheme used for supporting full-duplex communications and it is demonstrated that Time Division Duplexing (TDD) is substantially outperformed by Frequency Division Duplexing (FDD), unless the TDD scheme is combined with further sophisticated scheduling, MIMOs and/or adaptive modulation/coding. It is also argued that the specific choice of the Direct-Sequence (DS) spreading codes invoked in DS-CDMA predetermines the properties of the system. It is demonstrated that a specifically designed family of spreading codes exhibits a so-called interference-free window (IFW) and hence the resultant system is capable of outperforming its standardised counterpart employing classic Orthogonal Variable Spreading Factor (OVSF) codes under realistic dispersive channel conditions, provided that the interfering multi-user and multipath components arrive within this IFW. This condition may be ensured with the aid of quasisynchronous adaptive timing advance control. However, a limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles, employing a combination of several spreading sequences in the time-frequency and spatial-domain. The paper is concluded by quantifying the achievable user load of a UTRA-like TDD Code Division Multiple Access (CDMA) system employing Loosely Synchronized (LS) spreading codes exhibiting an IFW in comparison to that of its counterpart using OVSF codes. Both system's performance is enhanced using beamforming MIMOs

    Slow Frequency-Hopping Multicarrier DS-CDMA for Transmission over Nakagami Multipath Fading Channels

    No full text
    A novel multiple access scheme based on slow frequency hopping multicarrier direct-sequence code division multiple access (SFH/MC DS-CDMA) is proposed and investigated, which can be rendered compatible with the existing second-generation narrowband CDMA and third-generation wideband CDMA systems. The frequency hopping patterns are controlled by a set of constant-weight codes. Consequently, multirate communications can be implemented by selecting the corresponding sets of constant-weight codes having the required weights controlling the SFH patterns invoked. Two FH schemes, namely random and uniform FH, are considered and their advantages as well as disadvantages are investigated. We assume that the system operates in a multipath fading environment and a RAKE receiver structure with maximum ratio combining (MRC) is used for demodulation. The system’s performance is evaluated over the range of multipath Nakagami fading channels, under the assumption that the receiver has an explicit knowledge of the associated frequency-hopping (FH) patterns invoked. Furthermore, the performance of the SFH/MC DS-CDMA system is compared to that of the conventional single-carrier (SC) DS-CDMA system and that of the conventional MC DS-CDMA system, under the assumptions of constant system bandwidth and of constant transmitted signal power. Index Termsβ€”Code division multiple access, constant-weight code, frequency hopping, Nakagami fading, orthogonal frequency division multiplexing

    Overlapping M-ary Frequency Shift Keying Spread-Spectrum Multiple-Access Systems using Random Signature Sequences

    No full text
    In this paper, a multiple-access spread-spectrum communication system using binary frequency shift keying (BFSK) or M-ary frequency shift keying (MFSK) and noncoherent demodulation is considered. In contrast to previous work typically assuming that the frequency shift keying (FSK) tones are nonoverlapping after direct-sequence (DS) spreading, here we consider a spread-spectrum multiple-access (SSMA) system under the assumption that the DS spread signals of different FSK tones are only orthogonal over the information symbol duration. Consequently, the frequency band of a spread FSK tone may be fully or partially overlapping with the other spread signals. An estimate of the variance of the multiple-access interference is obtained by assuming that the phase angles and time delays of the received signals are mutually independent random variables, provided that random signature sequences are employed for spreading. On the basis of the above assumptions, the bit error rate (BER) of our DS spread-spectrum multiple-access (DS-SSMA) and that of our hybrid DS slow frequency-hopping spread-spectrum multiple-access (DS-SFHSSMA) systems using FSK modulation is analyzed, when the channel impairments are constituted by a combination of additive white Gaussian noise (AWGN) and multiple-access interference. From our analysis and the numerical results, we concluded that, for a given system bandwidth and for a certain value of M, the system’s BER performance can be optimized by controlling the amount of overlapping and that the systems with optimized overlapping outperformed the systems using no overlapping. Index Termsβ€”Frequency shift keying (FSK), slow frequency hopping, spread-spectrum multiple access

    Broadband MC DS-CDMA Using Space-Time and Frequency-Domain Spreading

    No full text
    In this contribution multicarrier direct-sequence code-division multiple-access (MC DS-CDMA) using space-time spreading (STS) assisted transmit diversity and frequency-domain (F-domain) spreading is investigated in the context of broadband communications over frequency-selective Rayleigh fading channels. We consider the attainable capacity extension of broadband MC DS-CDMA with the advent of using Time-Frequency-domain (TF-domain) spreading. The BER performance of STS assisted broadband MC DS-CDMA using Binary Phase Shit Keying (BPSK) modulation and TF-domain spreading is investigated by simulation for a range of parameter values. Both the correlation based single-user detector and the decorrelating multiuser detector are considered. Our study shows that the number of users supported by the broadband MC DS-CDMA system is determined by the product of the T-domain spreading factor and the F-domain spreading factor, while it is independent of the frequency diversity order. Furthermore, when multiuser detection assisted F-domain spreading is considered, the broadband MC DS-CDMA system is capable of supporting a substantially increased number of users, while maintaining a similar bit error ratio (BER) performance to that of the broadband MC DS-CDMA system using no F-domain spreading

    Blind Joint Soft-Detection Assisted Slow Frequency-Hopping Multicarrier DS-CDMA

    No full text
    A novel multiple-access scheme based on slow frequency-hopping multicarrier direct-sequence, code-division multiple access (SFH/MC DS-CDMA) is proposed and investigated, which can be rendered compatible with the existing second-generation narrow-band CDMA and third-generation wide-band CDMA systems. Blind joint soft-detection of the SFH/MC DS-CDMA signals is investigated, assuming that the receiver has no knowledge of the associated frequency-hopping (FH) patterns invoked. The system’s performance is evaluated over the range of Nakagami multipath fading channels. The results show that blind joint soft-detection achieves the required bit-error rate performance, while blindly acquiring the FH patterns employed. This is advantageous during the commencement of communications or during soft handover. Index Termsβ€”Blind detection, code-division multiple access, constant-weight codes, frequency-hopping, orthogonal frequency-division multiplexing

    Performance Analysis of Coded MM-ary Orthogonal Signaling Using Errors-and Erasures Decoding Over Frequency-Selective Fading Channels

    No full text
    The performance of MM-ary orthogonal signaling schemes employing Reed–Solomon (RS) codes and redundant residue number system (RRNS) codes is investigated over frequency-selective Rayleigh fading channels. β€œErrors-and-erasures” decoding is considered, where erasures are judged based on two low-complexity, low-delay erasure insertion schemesβ€”Viterbi’s ratio threshold test (RTT) and the proposed output threshold test (OTT). The probability density functions (PDF) of the ratio associated with the RTT and that of the demodulation output in the OTT conditioned on both the correct detection and erroneous detection of MM-ary signals are derived, and the characteristics of the RTT and OTT are investigated. Furthermore, expressions are derived for computing the codeword decoding error probability of RS codes or RRNS codes based on the above PDFs. The OTT technique is compared to Viterbi’s RTT, and both of these are compared to receivers using β€œerror-correction only” decoding over frequency-selective Rayleigh-fading channels. The numerical results show that by using β€œerrors-and-erasures” decoding, RS or RRNS codes of a given code rate can achieve higher coding gain than that without erasure information, and that the OTT technique outperforms the RTT, provided that both schemes are operated at the optimum decision thresholds. Index Termsβ€”β€œErrors-and-erasures” decoding, MM-ary orthogonal signaling, Rayleigh fading, redundant residue number system codes, Reed–Solomon codes

    Performance of Fractionally Spread Multicarrier CDMA in AWGN as Well as Slow and Fast Nakagami-m Fading Channels

    No full text
    Abstractβ€”In multicarrier code-division multiple-access (MCCDMA), the total system bandwidth is divided into a number of subbands, where each subband may use direct-sequence (DS) spreading and each subband signal is transmitted using a subcarrier frequency. In this paper, we divide the symbol duration into a number of fractional subsymbol durations also referred to here as fractions, in a manner analogous to subbands in MC-CDMA systems. In the proposed MC-CDMA scheme, the data streams are spread at both the symbol-fraction level and at the chip level by the transmitter, and hence the proposed scheme is referred to as the fractionally spread MC-CDMA arrangement, or FS MCCDMA. Furthermore, the FS MC-CDMA signal is additionally spread in the frequency (F)-domain using a spreading code with the aid of a number of subcarriers. In comparison to conventional MC-CDMA schemes, which are suitable for communications over frequency-selective fading channels, our study demonstrates that the proposed FS MC-CDMA is capable of efficiently exploiting both the frequency-selective and the time-selective characteristics of wireless channels. Index Termsβ€”Broadband communications, code-division multiple access (CDMA), fractionally spreading, frequency-domain spreading, multicarrier modulation, Nakagami fading, timedomain spreading

    Adaptive Space-Time-Spreading-Assisted Wideband CDMA Systems Communicating over Dispersive Nakagami-m Fading Channels

    No full text
    In this contribution, the performance of wideband code-division multiple-access (W-CDMA) systems using space-timespreading-(STS-) based transmit diversity is investigated, when frequency-selective Nakagami-m fading channels, multiuser interference, and background noise are considered. The analysis and numerical results suggest that the achievable diversity order is the product of the frequency-selective diversity order and the transmit diversity order. Furthermore, both the transmit diversity and the frequency-selective diversity have the same order of importance. Since W-CDMA signals are subjected to frequency-selective fading, the number of resolvable paths at the receiver may vary over a wide range depending on the transmission environment encountered. It can be shown that, for wireless channels where the frequency selectivity is sufficiently high, transmit diversity may be not necessitated. Under this case, multiple transmission antennas can be leveraged into an increased bitrate. Therefore, an adaptive STS-based transmission scheme is then proposed for improving the throughput ofW-CDMA systems. Our numerical results demonstrate that this adaptive STS-based transmission scheme is capable of significantly improving the effective throughput of W-CDMA systems. Specifically, the studied W-CDMA system’s bitrate can be increased by a factor of three at the modest cost of requiring an extra 0.4 dB or 1.2 dB transmitted power in the context of the investigated urban or suburban areas, respectively

    Non-Coherent Code Acquisition in the Multiple Transmit/Multiple Receive Antenna Aided Single- and Multi-Carrier DS-CDMA Downlink

    No full text
    We analyse the characteristics of the Non-Coherent (NC) Multiple Transmit/Multiple Receive (MTMR) antenna aided Multi-Carrier (MC) DS-CDMA downlink employing a serial search based acquisition scheme, when communicating over spatially uncorrelated Rayleigh channels. The associated Mean Acquisition Time (MAT) performance trends are characterised as a function of both the number of antennas and that of the number of subcarriers. It is shown that the employment of both multiple transmit antennas and multiple subcarriers is typically detrimental in terms of the achievable NC acquisition performance, while that obtained by exploiting multiple receive antennas is always beneficial, regardless whether single-path or multi-path scenarios are considered. Based on our results justified by information theoretic considerations, our acquisition design guidelines are applicable to diverse NC MTMR antenna aided scenarios. Index Termsβ€”MC-DS-CDMA, non-coherent, transmit/receive/ frequency diversity

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems
    • …
    corecore