28 research outputs found

    TG-Critic: A Timbre-Guided Model for Reference-Independent Singing Evaluation

    Full text link
    Automatic singing evaluation independent of reference melody is a challenging task due to its subjective and multi-dimensional nature. As an essential attribute of singing voices, vocal timbre has a non-negligible effect and influence on human perception of singing quality. However, no research has been done to include timbre information explicitly in singing evaluation models. In this paper, a data-driven model TG-Critic is proposed to introduce timbre embeddings as one of the model inputs to guide the evaluation of singing quality. The trunk structure of TG-Critic is designed as a multi-scale network to summarize the contextual information from constant-Q transform features in a high-resolution way. Furthermore, an automatic annotation method is designed to construct a large three-class singing evaluation dataset with low human-effort. The experimental results show that the proposed model outperforms the existing state-of-the-art models in most cases.Comment: The annotations for datasets used in this paper and further experimental results are available at https://github.com/YuejieGao/TG-CRITI

    Overexpression of MET4 Leads to the Upregulation of Stress-Related Genes and Enhanced Sulfite Tolerance in Saccharomyces uvarum

    No full text
    Saccharomyces uvarum is one of the few fermentative species that can be used in winemaking, but its weak sulfite tolerance is the main reason for its further use. Previous studies have shown that the expression of the methionine synthase gene (MET4) is upregulated in FZF1 (a gene encoding a putative zinc finger protein, which is a positive regulator of the transcription of the cytosolic sulfotransferase gene SSU1) overexpression transformant strains, but its exact function is unknown. To gain insight into the function of the MET4 gene, in this study, a MET4 overexpression vector was constructed and transformed into S. uvarum strain A9. The MET4 transformants showed a 20 mM increase in sulfite tolerance compared to the starting strain. Ninety-two differential genes were found in the transcriptome of A9-MET4 compared to the A9 strain, of which 90 were upregulated, and two were downregulated. The results of RT-qPCR analyses confirmed that the expression of the HOMoserine requiring gene (HOM3) in the sulfate assimilation pathway and some fermentation-stress-related genes were upregulated in the transformants. The overexpression of the MET4 gene resulted in a significant increase in sulfite tolerance, the upregulation of fermentation-stress-related gene expression, and significant changes in the transcriptome profile of the S. uvarum strain

    Analysis of fungal dynamic changes in the natural fermentation broth of ‘Hongyang’ kiwifruit

    No full text
    ‘Hongyang’ kiwifruit (Actinidia chinensis Planch.) is an ideal kiwifruit wine variety. At present, there is no research on the dynamic changes of yeast during the natural fermentation of kiwifruit wine. In this study, a high-throughput was employed to analyze the fungal population composition and diversity in the samples cultured in yeast extract peptone dextrose (YPD) medium and enriched in the natural fermentation process of ‘Hongyang’ kiwifruit at four time points, day one (D1T), day three (D3T), day five (D5T), and day fifteen (D15T). Five hundred and eighty-two operational taxonomic units (OTUs) were obtained from 131 genera and 178 species samples. The diversity analysis results showed that in the early natural fermentation stage, the dominant species was Aureobasidium pullulans, and as natural fermentation proceeded, the genus Pichia became the dominant species. Pichia kluyveri was an important species at the later stages of natural fermentation. An analysis of the metabolic pathways shows that P. kluyveri plays an aromatic-producing role in the natural fermentation of ‘Hongyang’ kiwifruit. These results could provide a theoretical basis for the studies of kiwifruit fungal diversity and fungal changes during fermentation. The findings could fix a major deficiency in the production of kiwifruit fruit wine, which lacks a specific flavor-producing yeast species or strain

    Functional Analysis of the FZF1 Genes of Saccharomyces uvarum

    No full text
    Being a sister species of Saccharomyces cerevisiae, Saccharomyces uvarum shows great potential regarding the future of the wine industry. The sulfite tolerance of most S. uvarum strains is poor, however. This is a major flaw that limits its utility in the wine industry. In S. cerevisiae, FZF1 plays a positive role in the transcription of SSU1, which encodes a sulfite efflux transport protein that is critical for sulfite tolerance. Although FZF1 has previously been shown to play a role in sulfite tolerance in S. uvarum, there is little information about its action mechanism. To assess the function of FZF1, two over-expression vectors that contained different FZF1 genes, and one FZF1 silencing vector, were constructed and introduced into a sulfite-tolerant S. uvarum strain using electroporation. In addition, an FZF1-deletion strain was constructed. Both of the FZF1-over-expressing strains showed an elevated tolerance to sulfite, and the FZF1-deletion strain showed the opposite effect. Repression of FZF1 transcription failed, however, presumably due to the lack of alleles of DCR1 and AGO. The qRT-PCR analysis was used to examine changes in transcription in the strains. Surprisingly, neither over-expressing strain promoted SSU1 transcription, although MET4 and HAL4 transcripts significantly increased in both sulfite-tolerance increased strains. We conclude that FZF1 plays a different role in the sulfite tolerance of S. uvarum compared to its role in S. cerevisiae

    Clustering Algorithm Based on the Ground-Air Cooperative Architecture in Border Patrol Scenarios

    No full text
    The border security situation is complex and severe, and the border patrol system relying on the ground-air cooperative architecture has been paid attention to by all countries as an important means of protecting national security. In the flying ad-hoc network (FANET), under the ground-air cooperative architecture, an unmanned aerial vehicle (UAV) uses a patrol mobility model to improve patrol efficiency. Since the patrol mobility model leads to frequent changes in UAV movement direction to improve patrol efficiency, selecting some clustering utility factors and calculating utility factors in previous clustering algorithms do not apply to this scenario. To solve the above problems, in this paper, we propose a border patrol clustering algorithm (BPCA) based on the ground-air cooperative architecture, which is based on the existing weighted clustering algorithm and improved in terms of the selection of utility factors and calculations of utility factors in cluster head selection. This algorithm comprehensively considers the effects of relative speed, relative distance, and the movement model of the UAV on the network topology. Extensive simulation results show that this algorithm can extend the duration time of cluster heads and cluster members and improve the stability of clusters and the reliability of links

    Genome-Wide Identification of Sweet Orange WRKY Transcription Factors and Analysis of Their Expression in Response to Infection by Penicillium digitatum

    No full text
    WRKY transcription factors (TFs) play a vital role in plant stress signal transduction and regulate the expression of various stress resistance genes. Sweet orange (Citrus sinensis) accounts for a large proportion of the world’s citrus industry, which has high economic value, while Penicillium digitatum is a prime pathogenic causing postharvest rot of oranges. There are few reports on how CsWRKY TFs play their regulatory roles after P. digitatum infects the fruit. In this study, we performed genome-wide identification, classification, phylogenetic and conserved domain analysis of CsWRKY TFs, visualized the structure and chromosomal localization of the encoded genes, explored the expression pattern of each CsWRKY gene under P. digitatum stress by transcriptome data, and made the functional prediction of the related genes. This study provided insight into the characteristics of 47 CsWRKY TFs, which were divided into three subfamilies and eight subgroups. TFs coding genes were unevenly distributed on nine chromosomes. The visualized results of the intron-exon structure and domain are closely related to phylogeny, and widely distributed cis-regulatory elements on each gene played a global regulatory role in gene expression. The expansion of the CSWRKY TFs family was probably facilitated by twenty-one pairs of duplicated genes, and the results of Ka/Ks calculations indicated that this gene family was primarily subjected to purifying selection during evolution. Our transcriptome data showed that 95.7% of WRKY genes were involved in the transcriptional regulation of sweet orange in response to P. digitatum infection. We obtained 15 differentially expressed genes and used the reported function of AtWRKY genes as references. They may be involved in defense against P. digitatum and other pathogens, closely related to the stress responses during plant growth and development. Two interesting genes, CsWRKY2 and CsWRKY14, were expressed more than 60 times and could be used as excellent candidate genes in sweet orange genetic improvement. This study offers a theoretical basis for the response of CSWRKY TFs to P. digitatum infection and provides a vital reference for molecular breeding

    Genome-Wide Identification of Sweet Orange WRKY Transcription Factors and Analysis of Their Expression in Response to Infection by <i>Penicillium digitatum</i>

    No full text
    WRKY transcription factors (TFs) play a vital role in plant stress signal transduction and regulate the expression of various stress resistance genes. Sweet orange (Citrus sinensis) accounts for a large proportion of the world’s citrus industry, which has high economic value, while Penicillium digitatum is a prime pathogenic causing postharvest rot of oranges. There are few reports on how CsWRKY TFs play their regulatory roles after P. digitatum infects the fruit. In this study, we performed genome-wide identification, classification, phylogenetic and conserved domain analysis of CsWRKY TFs, visualized the structure and chromosomal localization of the encoded genes, explored the expression pattern of each CsWRKY gene under P. digitatum stress by transcriptome data, and made the functional prediction of the related genes. This study provided insight into the characteristics of 47 CsWRKY TFs, which were divided into three subfamilies and eight subgroups. TFs coding genes were unevenly distributed on nine chromosomes. The visualized results of the intron-exon structure and domain are closely related to phylogeny, and widely distributed cis-regulatory elements on each gene played a global regulatory role in gene expression. The expansion of the CSWRKY TFs family was probably facilitated by twenty-one pairs of duplicated genes, and the results of Ka/Ks calculations indicated that this gene family was primarily subjected to purifying selection during evolution. Our transcriptome data showed that 95.7% of WRKY genes were involved in the transcriptional regulation of sweet orange in response to P. digitatum infection. We obtained 15 differentially expressed genes and used the reported function of AtWRKY genes as references. They may be involved in defense against P. digitatum and other pathogens, closely related to the stress responses during plant growth and development. Two interesting genes, CsWRKY2 and CsWRKY14, were expressed more than 60 times and could be used as excellent candidate genes in sweet orange genetic improvement. This study offers a theoretical basis for the response of CSWRKY TFs to P. digitatum infection and provides a vital reference for molecular breeding

    Transcriptome Analysis of Low-Temperature-Treated Tetraploid Yellow Actinidia chinensis Planch. Tissue Culture Plantlets

    No full text
    The cold-resistant mechanism of yellow kiwifruit associated with gene regulation is poorly investigated. In this study, to provide insight into the causes of differences in low-temperature tolerance and to better understand cold-adaptive mechanisms, we treated yellow tetraploid kiwifruit &lsquo;SWFU03&rsquo; tissue culture plantlets at low temperatures, used these plantlets for transcriptome analysis, and validated the expression levels of ten selected genes by real-time quantitative polymerase chain reaction (RT-qPCR) analysis. A number of 1630 differentially expressed genes (DEGs) were identified, of which 619 pathway genes were up-regulated, and 1011 were down-regulated in the cold treatment group. The DEGs enriched in the cold tolerance-related pathways mainly included the plant hormone signal transduction and the starch and sucrose metabolism pathway. RT-qPCR analysis confirmed the expression levels of eight up-regulated genes in these pathways in the cold-resistant mutants. In this study, cold tolerance-related pathways (the plant hormone signal transduction and starch and sucrose metabolism pathway) and genes, e.g., CEY00_Acc03316 (abscisic acid receptor PYL), CEY00_Acc13130 (bZIP transcription factor), CEY00_Acc33627 (TIFY protein), CEY00_Acc26744 (alpha-trehalose-phosphate synthase), CEY00_Acc28966 (beta-amylase), CEY00_Acc16756 (trehalose phosphatase), and CEY00_Acc08918 (beta-amylase 4) were found

    Genome-wide identification and expression analysis of the MADS gene family in sweet orange (Citrus sinensis) infested with pathogenic bacteria

    No full text
    The risk of pathogenic bacterial invasion in plantations has increased dramatically due to high environmental climate change and has seriously affected sweet orange fruit quality. MADS genes allow plants to develop increased resistance, but functional genes for resistance associated with pathogen invasion have rarely been reported. MADS gene expression profiles were analyzed in sweet orange leaves and fruits infested with Lecanicillium psalliotae and Penicillium digitatum, respectively. Eighty-two MADS genes were identified from the sweet orange genome, and they were classified into five prime subfamilies concerning the Arabidopsis MADS gene family, of which the MIKC subfamily could be subdivided into 13 minor subfamilies. Protein structure analysis showed that more than 93% of the MADS protein sequences of the same subfamily between sweet orange and Arabidopsis were very similar in tertiary structure, with only CsMADS8 and AG showing significant differences. The variability of MADS genes protein structures between sweet orange and Arabidopsis subgroups was less than the variabilities of protein structures within species. Chromosomal localization and covariance analysis showed that these genes were unevenly distributed on nine chromosomes, with the most genes on chromosome 9 and the least on chromosome 2, with 36 and two, respectively. Four pairs of tandem and 28 fragmented duplicated genes in the 82 MADS gene sequences were found in sweet oranges. GO (Gene Ontology) functional enrichment and expression pattern analysis showed that the functional gene CsMADS46 was strongly downregulated of sweet orange in response to biotic stress adversity. It is also the first report that plants’ MADS genes are involved in the biotic stress responses of sweet oranges. For the first time, L. psalliotae was experimentally confirmed to be the causal agent of sweet orange leaf spot disease, which provides a reference for the research and control of pathogenic L. psalliotae

    Transcriptome differential expression analysis of defoliation in different lemon varieties under drought treatment.

    No full text
    'Allen Eureka' is a bud variety of Eureka lemon with excellent fruiting traits, but severe winter defoliation affects the following year's yield, and the response mechanism of lemon defoliation is currently unknown. Two lemon cultivars ('Allen Eureka' and 'Yunning No. 1') with different defoliation traits were used as materials to investigate the molecular regulatory mechanisms of different leaf abscission periods in lemons. The petiole abscission zone was collected at three different defoliation stages, namely, the predefoliation stage (k15), the middefoliation stage (k30), and the postdefoliation stage (k45). Transcriptome sequencing was performed to analyze the gene expression differences between these two cultivars. A total of 1141, 2695, and 1433 differentially expressed genes (DEGs) were obtained in k15, k30, and k45, respectively, and the number of DEGs in k30 was the largest. GO analysis revealed that the DEGs between the two cultivars were mainly enriched in processes related to hydrolase activity, chitinase activity, oxidoreductase activity, and transcription regulator activity in the defoliation stages. KEGG analysis showed that the DEGs were concentrated in k30, which involved plant hormone signal transduction, phenylpropanoid biosynthesis, and biosynthesis of amino acids. The expression trends of some DEGs suggested their roles in regulating defoliation in Lemon. Seven genes were obtained by WGCNA, including sorbitol dehydrogenase (CL9G068822012_alt, CL9G068820012_alt, CL9G068818012_alt), abscisic acid 8'-hydroxylase (CL8G064053012_alt, CL8G064054012_alt), and asparagine synthetase (CL8G065162012_alt, CL8G065151012_alt), suggesting that these genes may be involved in the regulation of lemon leaf abscission
    corecore