2 research outputs found

    Multiscale Simulation as a Framework for the Enhanced Design of Nanodiamond-Polyethylenimine-Based Gene Delivery

    Full text link
    Nanodiamonds (NDs) are emerging carbon platforms with promise as gene/drug delivery vectors for cancer therapy. Specifically, NDs functionalized with the polymer polyethylenimine (PEI) can transfect small interfering RNAs (siRNA) in vitro with high efficiency and low cytotoxicity. Here we present a modeling framework to accurately guide the design of ND-PEI gene platforms and elucidate binding mechanisms between ND, PEI, and siRNA. This is among the first ND simulations to comprehensively account for ND size, charge distribution, surface functionalization, and graphitization. The simulation results are compared with our experimental results both for PEI loading onto NDs and for siRNA (c-Myc) loading onto ND-PEI for various mixing ratios. Remarkably, the model is able to predict loading trends and saturation limits for PEI and siRNA while confirming the essential role of ND surface functionalization in mediating ND-PEI interactions. These results demonstrate that this robust framework can be a powerful tool in ND platform development, with the capacity to realistically treat other nanoparticle systems

    Real-Time Analysis of Cellular Response to Small-Molecule Drugs within a Microfluidic Dielectrophoresis Device

    Full text link
    Quantitative detection of the biological properties of living cells is essential for a wide range of purposes, from the understanding of cellular characteristics to the development of novel drugs in nanomedicine. Here, we demonstrate that analysis of cell biological properties within a microfluidic dielectrophoresis device enables quantitative detection of cellular biological properties and simultaneously allows large-scale measurement in a noise-robust and probeless manner. Applying this technique, the static and dynamic biological responses of live B16F10 melanoma cells to the small-molecule drugs such as <i>N</i>-ethylmaleimide (NEM) and [(dihydronindenyl)­oxy]­alkanoic acid (DIOA) were quantitatively and statistically examined by investigating changes in movement of the cells. Measurement was achieved using subtle variations in dielectrophoresis (DEP) properties of the cells, which were attributed to activation or deactivation of K<sup>+</sup>/Cl<sup>–</sup> cotransporter channels on the cell membrane by the small-molecule drugs, in a microfluidic device. On the basis of quantitative analysis data, we also provide the first report of the shift of the complex permittivity of a cell induced by the small-molecule drugs. In addition, we demonstrate interesting quantifiable parameters including the drug effectiveness coefficient, antagonistic interaction coefficient, kinetic rate, and full width at half-maximum, which corresponded to changes in biological properties of B16F10 cells over time when NEM and DIOA were introduced alone or in combination. Those demonstrated parameters represent very useful tools for evaluating the effect of small-molecule drugs on the biological properties of cells
    corecore