7,567 research outputs found

    Proposed Spontaneous Generation of Magnetic Fields by Curved Layers of a Chiral Superconductor

    Full text link
    We demonstrate that two-dimensional chiral superconductors on curved surfaces spontaneously develop magnetic flux. This geometric Meissner effect provides an unequivocal signature of chiral super- conductivity, which could be observed in layered materials under stress. We also employ the effect to explain some puzzling questions related to the location of zero-energy Majorana modes

    Microscopic theory of the quantum Hall hierarchy

    Full text link
    We solve the quantum Hall problem exactly in a limit and show that the ground states can be organized in a fractal pattern consistent with the Haldane-Halperin hierarchy, and with the global phase diagram. We present wave functions for a large family of states, including those of Laughlin and Jain and also for states recently observed by Pan {\it et. al.}, and show that they coincide with the exact ones in the solvable limit. We submit that they establish an adiabatic continuation of our exact results to the experimentally accessible regime, thus providing a unified approach to the hierarchy states.Comment: 4 pages, 2 figures. Publishe

    Solitons and Quasielectrons in the Quantum Hall Matrix Model

    Full text link
    We show how to incorporate fractionally charged quasielectrons in the finite quantum Hall matrix model.The quasielectrons emerge as combinations of BPS solitons and quasiholes in a finite matrix version of the noncommutative ϕ4\phi^4 theory coupled to a noncommutative Chern-Simons gauge field. We also discuss how to properly define the charge density in the classical matrix model, and calculate density profiles for droplets, quasiholes and quasielectrons.Comment: 15 pages, 9 figure

    Irregular Fluctuations in Competitive Markets with Production Lags

    Full text link

    Edge Theories for Polarized Quantum Hall States

    Full text link
    Starting from recently proposed bosonic mean field theories for fully and partially polarized quantum Hall states, we construct corresponding effective low energy theories for the edge modes. The requirements of gauge symmetry and invariance under global O(3) spin rotations, broken only by a Zeeman coupling, imply boundary conditions that allow for edge spin waves. In the generic case, these modes are chiral, and the spin stiffness differs from that in the bulk. For the case of a fully polarized ν=1\nu=1 state, our results agree with previous Hartree-Fock calculations.Comment: 15 pages (number of pages has been reduced by typesetting in RevTeX); 2 references adde
    corecore