26 research outputs found
Assessing the environmental benefits of utilising residual flows
Item does not contain fulltex
Global implications of crop-based bioenergy with carbon capture and storage for terrestrial vertebrate biodiversity
Bioenergy with carbon capture and storage (BECCS) based on purpose-grown lignocellulosic crops can provide negative CO 2 emissions to mitigate climate change, but its land requirements present a threat to biodiversity. Here, we analyse the implications of crop-based BECCS for global terrestrial vertebrate species richness, considering both the land-use change (LUC) required for BECCS and the climate change prevented by BECCS. LUC impacts are determined using global-equivalent, species–area relationship-based loss factors. We find that sequestering 0.5–5 Gtonne of CO 2 per year with lignocellulosic crop-based BECCS would require hundreds of Mha of land, and commit tens of terrestrial vertebrate species to extinction. Species loss per unit of negative emissions decreases with: (i) longer lifetimes of BECCS systems, (ii) less overall deployment of crop-based BECCS and (iii) optimal land allocation, that is prioritizing locations with the lowest species loss per negative emission potential, rather than minimizing overall land use or prioritizing locations with the lowest biodiversity. The consequences of prevented climate change for biodiversity are based on existing climate response relationships. Our tentative comparison shows that for crop-based BECCS considered over 30 years, LUC impacts on vertebrate species richness may outweigh the positive effects of prevented climate change. Conversely, for BECCS considered over 80 years, the positive effects of climate change mitigation on biodiversity may outweigh the negative effects of LUC. However, both effects and their interaction are highly uncertain and require further understanding, along with the analysis of additional species groups and biodiversity metrics. We conclude that factoring in biodiversity means lignocellulosic crop-based BECCS should be used early to achieve the required mitigation over longer time periods, on optimal biomass cultivation locations, and most importantly, as little as possible where conversion of natural land is involved, looking instead to sustainably grown or residual biomass-based feedstocks and alternative strategies for carbon dioxide removal
Biomass residues as twenty-first century bioenergy feedstock—a comparison of eight integrated assessment models
In the twenty-first century, modern bioenergy could become one of the largest sources of energy, partially replacing fossil fuels and contributing to climate change mitigation. Agricultural and forestry biomass residues form an inexpensive bioenergy feedstock with low greenhouse gas (GHG) emissions, if harvested sustainably. We analysed quantities of biomass residues supplied for energy and their sensitivities in harmonised bioenergy demand scenarios across eight integrated assessment models (IAMs) and compared them with literature-estimated residue availability. IAM results vary substantially, at both global and regional scales, but suggest that residues could meet 7–50% of bioenergy demand towards 2050, and 2–30% towards 2100, in a scenario with 300 EJ/year of exogenous bioenergy demand towards 2100. When considering mean literature-estimated availability, residues could provide around 55 EJ/year by 2050. Inter-model differences primarily arise from model structure, assumptions, and the representation of agriculture and forestry. Despite these differences, drivers of residues supplied and underlying cost dynamics are largely similar across models. Higher bioenergy demand or biomass prices increase the quantity of residues supplied for energy, though their effects level off as residues become depleted. GHG emission pricing and land protection can increase the costs of using land for lignocellulosic bioenergy crop cultivation, which increases residue use at the expense of lignocellulosic bioenergy crops. In most IAMs and scenarios, supplied residues in 2050 are within literature-estimated residue availability, but outliers and sustainability concerns warrant further exploration. We conclude that residues can cost-competitively play an important role in the twenty-first century bioenergy supply, though uncertainties remain concerning (regional) forestry and agricultural production and resulting residue supply potentials
Slater-Pauling Behavior of the Half-Ferromagnetic Full-Heusler Alloys
Using the full-potential screened Korringa-Kohn-Rostoker method we study the
full-Heusler alloys based on Co, Fe, Rh and Ru. We show that many of these
compounds show a half-metallic behavior, however in contrast to the
half-Heusler alloys the energy gap in the minority band is extremely small.
These full-Heusler compounds show a Slater-Pauling behavior and the total
spin-magnetic moment per unit cell (M_t) scales with the total number of
valence electrons (Z_t) following the rule: M_t=Z_t-24. We explain why the
spin-down band contains exactly 12 electrons using arguments based on the group
theory and show that this rule holds also for compounds with less than 24
valence electrons. Finally we discuss the deviations from this rule and the
differences compared to the half-Heusler alloys.Comment: 10 pages, 8 figures, revised figure 3, new text adde
Origin and Properties of the Gap in the Half-Ferromagnetic Heusler Alloys
We study the origin of the gap and the role of chemical composition in the
half-ferromagnetic Heusler alloys using the full-potential screened KKR method.
In the paramagnetic phase the C1_b compounds, like NiMnSb, present a gap.
Systems with 18 valence electrons, Z_t, per unit cell, like CoTiSb, are
semiconductors, but when Z_t > 18 antibonding states are also populated, thus
the paramagnetic phase becomes unstable and the half-ferromagnetic one is
stabilized. The minority occupied bands accommodate a total of nine electrons
and the total magnetic moment per unit cell in mu_B is just the difference
between Z_t and . While the substitution of the transition metal
atoms may preserve the half-ferromagnetic character, substituting the atom
results in a practically rigid shift of the bands and the loss of
half-metallicity. Finally we show that expanding or contracting the lattice
parameter by 2% preserves the minority-spin gap.Comment: 11 pages, 7 figures New figures, revised tex
Recent Advances in Understanding Particle Acceleration Processes in Solar Flares
We review basic theoretical concepts in particle acceleration, with
particular emphasis on processes likely to occur in regions of magnetic
reconnection. Several new developments are discussed, including detailed
studies of reconnection in three-dimensional magnetic field configurations
(e.g., current sheets, collapsing traps, separatrix regions) and stochastic
acceleration in a turbulent environment. Fluid, test-particle, and
particle-in-cell approaches are used and results compared. While these studies
show considerable promise in accounting for the various observational
manifestations of solar flares, they are limited by a number of factors, mostly
relating to available computational power. Not the least of these issues is the
need to explicitly incorporate the electrodynamic feedback of the accelerated
particles themselves on the environment in which they are accelerated. A brief
prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
Burning Biomass to Limit Global Warming - on the potential and trade-offs of second-generation bioenergy
Contains fulltext :
230217.pdf (publisher's version ) (Open Access)
Contains fulltext :
230217appendix.pdf (publisher's version ) (Open Access)Radboud University, 31 maart 2021Promotores : Huijbregts, M.A.J., Vuuren, D.P. van Co-promotores : Steinmann, Z.J.N., Daioglou, Vassili
Source Data for Hanssen, Steinmann et al. (Global implications of lignocellulosic crop-based BECCS for terrestrial vertebrate biodiversity)
This dataset contains the data that support the findings in the Hanssen, Steinmann et al. study on the ‘Global implications of lignocellulosic crop-based BECCS for terrestrial vertebrate biodiversity’. It includes source data for all figures in this study as well as source data for the supplementary materials. Data are organised per figure and presented as CSV files for curves and netCDF files for maps