4,065 research outputs found
Controlling the quantum dynamics of a mesoscopic spin bath in diamond
Understanding and mitigating decoherence is a key challenge for quantum
science and technology. The main source of decoherence for solid-state spin
systems is the uncontrolled spin bath environment. Here, we demonstrate quantum
control of a mesoscopic spin bath in diamond at room temperature that is
composed of electron spins of substitutional nitrogen impurities. The resulting
spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre
electron spin as a magnetic field sensor. We exploit the spin bath control to
dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by
combining spin bath control with dynamical decoupling, we directly measure the
coherence and temporal correlations of different groups of bath spins. These
results uncover a new arena for fundamental studies on decoherence and enable
novel avenues for spin-based magnetometry and quantum information processing
Decoherence-protected quantum gates for a hybrid solid-state spin register
Protecting the dynamics of coupled quantum systems from decoherence by the
environment is a key challenge for solid-state quantum information processing.
An idle qubit can be efficiently insulated from the outside world via dynamical
decoupling, as has recently been demonstrated for individual solid-state
qubits. However, protection of qubit coherence during a multi-qubit gate poses
a non-trivial problem: in general the decoupling disrupts the inter-qubit
dynamics, and hence conflicts with gate operation. This problem is particularly
salient for hybrid systems, wherein different types of qubits evolve and
decohere at vastly different rates. Here we present the integration of
dynamical decoupling into quantum gates for a paradigmatic hybrid system, the
electron-nuclear spin register. Our design harnesses the internal resonance in
the coupled-spin system to resolve the conflict between gate operation and
decoupling. We experimentally demonstrate these gates on a two-qubit register
in diamond operating at room temperature. Quantum tomography reveals that the
qubits involved in the gate operation are protected as accurately as idle
qubits. We further illustrate the power of our design by executing Grover's
quantum search algorithm, achieving fidelities above 90% even though the
execution time exceeds the electron spin dephasing time by two orders of
magnitude. Our results directly enable decoherence-protected interface gates
between different types of promising solid-state qubits. Ultimately, quantum
gates with integrated decoupling may enable reaching the accuracy threshold for
fault-tolerant quantum information processing with solid-state devices.Comment: This is original submitted version of the paper. The revised and
finalized version is in print, and is subjected to the embargo and other
editorial restrictions of the Nature journa
Relationship of blood monocytes with chronic lymphocytic leukemia aggressiveness and outcomes: a multi‐institutional study
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134120/1/ajh24376.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134120/2/ajh24376_am.pd
Relationship of blood monocytes with chronic lymphocytic leukemia aggressiveness and outcomes: a multi‐institutional study
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134120/1/ajh24376.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134120/2/ajh24376_am.pd
Geometrodynamics of Schwarzschild Black Holes
The curvature coordinates of a Schwarz\-schild spacetime are turned
into canonical coordinates on the phase space of spherically
symmetric black holes. The entire dynamical content of the Hamiltonian theory
is reduced to the constraints requiring that the momenta vanish. What remains is a conjugate pair of canonical variables and
whose values are the same on every embedding. The coordinate is the
Schwarzschild mass, and the momentum the difference of parametrization
times at right and left infinities. The Dirac constraint quantization in the
new representation leads to the state functional which describes an unchanging superposition of black holes with different
masses. The new canonical variables may be employed in the study of collapsing
matter systems.Comment: 44 pages, Latex file, UU-REL-94/3/
Observation of anomalous decoherence effect in a quantum bath at room temperature
Decoherence of quantum objects is critical to modern quantum sciences and
technologies. It is generally believed that stronger noises cause faster
decoherence. Strikingly, recent theoretical research discovers the opposite
case for spins in quantum baths. Here we report experimental observation of the
anomalous decoherence effect for the electron spin-1 of a nitrogen-vacancy
centre in high-purity diamond at room temperature. We demonstrate that under
dynamical decoupling, the double-transition can have longer coherence time than
the single-transition, even though the former couples to the nuclear spin bath
as twice strongly as the latter does. The excellent agreement between the
experimental and the theoretical results confirms the controllability of the
weakly coupled nuclear spins in the bath, which is useful in quantum
information processing and quantum metrology.Comment: 22 pages, related paper at http://arxiv.org/abs/1102.557
Towards Canonical Quantum Gravity for G1 Geometries in 2+1 Dimensions with a Lambda--Term
The canonical analysis and subsequent quantization of the (2+1)-dimensional
action of pure gravity plus a cosmological constant term is considered, under
the assumption of the existence of one spacelike Killing vector field. The
proper imposition of the quantum analogues of the two linear (momentum)
constraints reduces an initial collection of state vectors, consisting of all
smooth functionals of the components (and/or their derivatives) of the spatial
metric, to particular scalar smooth functionals. The demand that the
midi-superspace metric (inferred from the kinetic part of the quadratic
(Hamiltonian) constraint) must define on the space of these states an induced
metric whose components are given in terms of the same states, which is made
possible through an appropriate re-normalization assumption, severely reduces
the possible state vectors to three unique (up to general coordinate
transformations) smooth scalar functionals. The quantum analogue of the
Hamiltonian constraint produces a Wheeler-DeWitt equation based on this reduced
manifold of states, which is completely integrated.Comment: Latex 2e source file, 25 pages, no figures, final version (accepted
in CQG
An action principle for the quantization of parametric theories and nonlinear quantum cosmology
By parametrizing the action integral for the standard Schrodinger equation we
present a derivation of the recently proposed method for quantizing a
parametrized theory. The reformulation suggests a natural extension from
conventional to nonlinear quantum mechanics. This generalization enables a
unitary description of the quantum evolution for a broad class of constrained
Hamiltonian systems with a nonlinear kinematic structure. In particular, the
new theory is applicable to the quantization of cosmological models where a
chosen gravitational degree of freedom acts as geometric time. This is
demonstrated explicitly using three cosmological models: the Friedmann universe
with a massless scalar field and Bianchi type I and IX models. Based on these
investigations, the prospect of further developing the proposed quantization
scheme in the context of quantum gravity is discussed.Comment: 14 page
Quantum Computing
Quantum mechanics---the theory describing the fundamental workings of
nature---is famously counterintuitive: it predicts that a particle can be in
two places at the same time, and that two remote particles can be inextricably
and instantaneously linked. These predictions have been the topic of intense
metaphysical debate ever since the theory's inception early last century.
However, supreme predictive power combined with direct experimental observation
of some of these unusual phenomena leave little doubt as to its fundamental
correctness. In fact, without quantum mechanics we could not explain the
workings of a laser, nor indeed how a fridge magnet operates. Over the last
several decades quantum information science has emerged to seek answers to the
question: can we gain some advantage by storing, transmitting and processing
information encoded in systems that exhibit these unique quantum properties?
Today it is understood that the answer is yes. Many research groups around the
world are working towards one of the most ambitious goals humankind has ever
embarked upon: a quantum computer that promises to exponentially improve
computational power for particular tasks. A number of physical systems,
spanning much of modern physics, are being developed for this task---ranging
from single particles of light to superconducting circuits---and it is not yet
clear which, if any, will ultimately prove successful. Here we describe the
latest developments for each of the leading approaches and explain what the
major challenges are for the future.Comment: 26 pages, 7 figures, 291 references. Early draft of Nature 464, 45-53
(4 March 2010). Published version is more up-to-date and has several
corrections, but is half the length with far fewer reference
Distances and ages of globular clusters using Hipparcos parallaxes of local subdwarfs
We discuss the impact of Population II and Globular Cluster (GCs) stars on
the derivation of the age of the Universe, and on the study of the formation
and early evolution of galaxies, our own in particular. The long-standing
problem of the actual distance scale to Population II stars and GCs is
addressed, and a variety of different methods commonly used to derive distances
to Population II stars are briefly reviewed. Emphasis is given to the
discussion of distances and ages for GCs derived using Hipparcos parallaxes of
local subdwarfs. Results obtained by different authors are slightly different,
depending on different assumptions about metallicity scale, reddenings, and
corrections for undetected binaries. These and other uncertainties present in
the method are discussed. Finally, we outline progress expected in the near
future.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles',
A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 22
pages including 3 tables and 2 postscript figures, uses Kluwer's crckapb.sty
LaTeX style file, enclose
- …