1,736 research outputs found

    Lines, Circles, Planes and Spheres

    Full text link
    Let SS be a set of nn points in R3\mathbb{R}^3, no three collinear and not all coplanar. If at most n−kn-k are coplanar and nn is sufficiently large, the total number of planes determined is at least 1+k(n−k2)−(k2)(n−k2)1 + k \binom{n-k}{2}-\binom{k}{2}(\frac{n-k}{2}). For similar conditions and sufficiently large nn, (inspired by the work of P. D. T. A. Elliott in \cite{Ell67}) we also show that the number of spheres determined by nn points is at least 1+(n−13)−t3orchard(n−1)1+\binom{n-1}{3}-t_3^{orchard}(n-1), and this bound is best possible under its hypothesis. (By t3orchard(n)t_3^{orchard}(n), we are denoting the maximum number of three-point lines attainable by a configuration of nn points, no four collinear, in the plane, i.e., the classic Orchard Problem.) New lower bounds are also given for both lines and circles.Comment: 37 page

    Towards a machine-independent transput section

    Get PDF
    If the transput section of an ALGOL-68 compiler is to be portable, it must be described in such a way that it is clear which aspects are machine-dependent, and which are not. There should be a clear set of primitives underlying the transput. In this report, a description is proposed which can really be used as an implementation model: the transput is described in pseudo-ALGOL 68, except for the underlying primitives, whose semantics are given in some kind of formalized English. The state of this model is by no means definitive, but may serve as a start for further discussion

    Neutron Halo Isomers in Stable Nuclei and their Possible Application for the Production of Low Energy, Pulsed, Polarized Neutron Beams of High Intensity and High Brilliance

    Full text link
    We propose to search for neutron halo isomers populated via Îł\gamma-capture in stable nuclei with mass numbers of about A=140-180 or A=40-60, where the 4s1/24s_{1/2} or 3s1/23s_{1/2} neutron shell model state reaches zero binding energy. These halo nuclei can be produced for the first time with new Îł\gamma-beams of high intensity and small band width (≀\le 0.1%) achievable via Compton back-scattering off brilliant electron beams thus offering a promising perspective to selectively populate these isomers with small separation energies of 1 eV to a few keV. Similar to single-neutron halo states for very light, extremely neutron-rich, radioactive nuclei \cite{hansen95,tanihata96,aumann00}, the low neutron separation energy and short-range nuclear force allows the neutron to tunnel far out into free space much beyond the nuclear core radius. This results in prolonged half lives of the isomers for the Îł\gamma-decay back to the ground state in the 100 ps-ÎŒ\mus range. Similar to the treatment of photodisintegration of the deuteron, the neutron release from the neutron halo isomer via a second, low-energy, intense photon beam has a known much larger cross section with a typical energy threshold behavior. In the second step, the neutrons can be released as a low-energy, pulsed, polarized neutron beam of high intensity and high brilliance, possibly being much superior to presently existing beams from reactors or spallation neutron sources.Comment: accepted for publication in Applied Physics

    Pion emission in 2H, 12C, 27Al, gamma pi+ reactions at threshold

    Full text link
    The first data from MAX-lab in Lund, Sweden on pion production in photonuclear reactions at threshold energies, is presented. The decrease of the total yield of pi+ in gamma + 12C, 27Al reactions below 200 MeV as well as differential, dsigma/dOmega, cross sections follow essentially predictions from an intranuclear cascade model with an attractive potential for pion-nucleus interaction in its simplest form. Double differential, d2sigma/dOmegadT, cross sections at 176 MeV show, however, deviations from the model, which call for refinements of nuclear and Coulomb potentials and possibly also for coherent pion production mechanisms.Comment: 19 pages, 7 figure

    Tritium Beta Decay, Neutrino Mass Matrices and Interactions Beyond the Standard Model

    Get PDF
    The interference of charge-changing interactions, weaker than the V-A Standard Model (SM) interaction and having a different Lorentz structure, with that SM interaction, can, in principle, produce effects near the end point of the Tritium beta decay spectrum which are of a different character from those produced by the purely kinematic effect of neutrino mass expected in the simplest extension of the SM. We show that the existence of more than one mass eigenstate can lead to interference effects at the end point that are stronger than those occurring over the entire spectrum. We discuss these effects both for the special case of Dirac neutrinos and the more general case of Majorana neutrinos and show that, for the present precision of the experiments, one formula should suffice to express the interference effects in all cases. Implications for "sterile" neutrinos are noted.Comment: 32 pages, LaTeX, 6 figures, PostScript; full discussion and changes in notation from Phys. Lett. B440 (1998) 89, nucl-th/9807057; submitted to Phys. Rev.

    C(spn)−X (n=1–3) bond activation by palladium

    Get PDF
    We have studied the palladium-mediated activation of C(sp(n))-X bonds (n = 1-3 and X = H, CH3, Cl) in archetypal model substrates H3C-CH2-X, H2C=CH-X and HC equivalent to C-X by catalysts PdLn with L-n = no ligand, Cl-, and (PH3)(2), using relativistic density functional theory at ZORA-BLYP/TZ2P. The oxidative addition barrier decreases along this series, even though the strength of the bonds increases going from C(sp(3))-X, to C(sp(2))-X, to C(sp)-X. Activation strain and matching energy decomposition analyses reveal that the decreased oxidative addition barrier going from sp(3), to sp(2), to sp, originates from a reduction in the destabilizing steric (Pauli) repulsion between catalyst and substrate. This is the direct consequence of the decreasing coordination number of the carbon atom in C(sp(n))-X, which goes from four, to three, to two along this series. The associated net stabilization of the catalyst-substrate interaction dominates the trend in strain energy which indeed becomes more destabilizing along this same series as the bond becomes stronger from C(sp(3))-X to C(sp)-X.Bio-organic Synthesi

    Strange Meson Enhancement in PbPb Collisions

    Get PDF
    The NA44 Collaboration has measured yields and differential distributions of K+, K-, pi+, pi- in transverse kinetic energy and rapidity, around the center-of-mass rapidity in 158 A GeV/c Pb+Pb collisions at the CERN SPS. A considerable enhancement of K+ production per pi is observed, as compared to p+p collisions at this energy. To illustrate the importance of secondary hadron rescattering as an enhancement mechanism, we compare strangeness production at the SPS and AGS with predictions of the transport model RQMD.Comment: 11 pages, including 4 figures, LATE

    Influence of Low-Degree High-Order p-Mode Splittings on the Solar Rotation Profile

    Get PDF
    The solar rotation profile is well constrained down to about 0.25 R thanks to the study of acoustic modes. Since the radius of the inner turning point of a resonant acoustic mode is inversely proportional to the ratio of its frequency to its degree, only the low-degree p modes reach the core. The higher the order of these modes, the deeper they penetrate into the Sun and thus they carry more diagnostic information on the inner regions. Unfortunately, the estimates of frequency splittings at high frequency from Sun-as-a-star measurements have higher observational errors due to mode blending, resulting in weaker constraints on the rotation profile in the inner core. Therefore inversions for the solar internal rotation use only modes below 2.4 mHz for l < 4. In the work presented here, we used an 11.5 year-long time series to compute the rotational frequency splittings for modes l < 4 using velocities measured with the GOLF instrument. We carried out a theoretical study of the influence of the low-degree modes in the region 2 to 3.5 mHz on the inferred rotation profile as a function of their error bars.Comment: Accepted for publication in Solar Physics. 17 Pages, 9 figure

    The Persistence Length of a Strongly Charged, Rod-like, Polyelectrolyte in the Presence of Salt

    Full text link
    The persistence length of a single, intrinsically rigid polyelectrolyte chain, above the Manning condensation threshold is investigated theoretically in presence of added salt. Using a loop expansion method, the partition function is consistently calculated, taking into account corrections to mean-field theory. Within a mean-field approximation, the well-known results of Odijk, Skolnick and Fixman are reproduced. Beyond mean-field, it is found that density correlations between counterions and thermal fluctuations reduce the stiffness of the chain, indicating an effective attraction between monomers for highly charged chains and multivalent counterions. This attraction results in a possible mechanical instability (collapse), alluding to the phenomenon of DNA condensation. In addition, we find that more counterions condense on slightly bent conformations of the chain than predicted by the Manning model for the case of an infinite cylinder. Finally, our results are compared with previous models and experiments.Comment: 13 pages, 2 ps figure
    • 

    corecore