51 research outputs found
Oil Palm Research in Context: Identifying the Need for Biodiversity Assessment
Oil palm cultivation is frequently cited as a major threat to tropical biodiversity as it is centered on some of the world's most biodiverse regions. In this report, Web of Science was used to find papers on oil palm published since 1970, which were assigned to different subject categories to visualize their research focus. Recent years have seen a broadening in the scope of research, with a slight growth in publications on the environment and a dramatic increase in those on biofuel. Despite this, less than 1% of publications are related to biodiversity and species conservation. In the context of global vegetable oil markets, palm oil and soyabean account for over 60% of production but are the subject of less than 10% of research. Much more work must be done to establish the impacts of habitat conversion to oil palm plantation on biodiversity. Results from such studies are crucial for informing conservation strategies and ensuring sustainable management of plantations
Increasing Demand for Natural Rubber Necessitates a Robust Sustainability Initiative to Mitigate Impacts on Tropical Biodiversity
© 2015 Wiley Periodicals, Inc.Strong international demand for natural rubber is driving expansion of industrial-scale and smallholder monoculture plantations, with >2 million ha established during the last decade. Mainland Southeast Asia and Southwest China represent the epicenter of rapid rubber expansion; here we review impacts on forest ecosystems and biodiversity. We estimate that 4.3-8.5 million ha of additional rubber plantations are required to meet projected demand by 2024, threatening significant areas of Asian forest, including many protected areas. Uncertainties concern the potential for yield intensification of existing cultivation to mitigate demand for new rubber area, versus potential displacement of rubber by more profitable oil palm. Our review of available studies indicates that conversion of forests or swidden agriculture to monoculture rubber negatively impacts bird, bat and invertebrate biodiversity. However, rubber agroforests in some areas of Southeast Asia support a subset of forest biodiversity in landscapes that retain little natural forest. Work is urgently needed to: improve understanding of whether land-sparing or land-sharing rubber cultivation will best serve biodiversity conservation, investigate the potential to accommodate biodiversity within existing rubber-dominated landscapes while maintaining yields, and ensure rigorous biodiversity and social standards via the development of a sustainability initiative
The World's Rediscovered Species: Back from the Brink?
Each year, numerous species thought to have disappeared are rediscovered. Yet, do these rediscoveries represent the return of viable populations or the delayed extinction of doomed species? We document the number, distribution and conservation status of rediscovered amphibian, bird, and mammal species globally. Over the past 122 years, at least 351 species have been rediscovered, most occurring in the tropics. These species, on average, were missing for 61 years before being rediscovered (range of 3–331 years). The number of rediscoveries per year increased over time and the majority of these rediscoveries represent first documentations since their original description. Most rediscovered species have restricted ranges and small populations, and 92% of amphibians, 86% of birds, and 86% of mammals are highly threatened, independent of how long they were missing or when they were rediscovered. Under the current trends of widespread habitat loss, particularly in the tropics, most rediscovered species remain on the brink of extinction
Sustainable drainage system site assessment method using urban ecosystem services
The United Kingdom's recently updated approach to sustainable drainage enhanced biodiversity and amenity objectives by incorporating the ecosystem approach and the
ecosystem services concept. However, cost-effective and reliable methods to appraise the biodiversity and amenity values of potential sustainable drainage system (SuDS)sites and their surrounding areas are still lacking, as is a method to enable designers to distinguish and link the amenity and biodiversity benefits that SuDS schemes can offer. In this paper, therefore, the authors propose two ecosystem services- and disservices-based methods (i.e. vegetation structure cover-abundance examination and cultural ecosystem services and disservices variables appraisal) to aid SuDS designers to distinguish and link amenity and biodiversity benefits, and allow initial site
assessments to be performed in a cost-effective and reliable fashion. Forty-nine representative sites within Greater Manchester were selected to test the two methods.
Amenity and biodiversity were successfully assessed and habitat for species, carbon sequestration, recreation and education ecosystem services scores were produced,which will support SuDS retrofit design decision-making. Large vegetated SuDS sites with permanent aquatic features were found to be most capable of enhancing biodiversity- and amenity-related ecosystem services. Habitat for species and
recreation ecosystem services were also found to be positively linked to each other. Finally, waste bins on site were found to help reduce dog faeces and litter coverage. Overall, the findings presented here enable future SuDS retrofit designs to be more wildlife friendly and socially inclusive
Life after logging in tropical forests of Borneo: A meta-analysis
Selectively logged tropical forests retain high species richness and functional diversity, but species composition changes after logging, suggesting that some species are more vulnerable to logging than others. We did a meta-analysis to summarise the effect of logging on the abundance of individual bird and mammal species in tropical forests of Borneo, which have suffered some of the most intense selective logging in the tropics. We found that species classified by the International Union for Conservation of Nature (IUCN) as ‘vulnerable’ or ‘near-threatened’ are generally less abundant in logged tropical forests than those classified as ‘least concern’. However, the effect of logging within each IUCN category is variable, indicating that logging is not the only or main cause of decline in abundance. While our results show that closely related species responded similarly to logging, in birds there was significant variation between responses of some closely related species. Bigger species were significantly more susceptible to logging than smaller species in both birds and mammals. We also found that cavity-nesting birds suffered more from logging than did other species. Our results highlight the importance of identifying which factors lead individual species to flourish or suffer in logged tropical forests
A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape
Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways
The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study
Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men <= 50y, men > 50y, women <= 50y, women > 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR< 5%) age-specific effects, of which 11 had larger effects in younger (< 50y) than in older adults (>= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.</p
A Single Bottleneck in HLA-C Assembly
Poor assembly of class I major histocompatibility HLA-C heavy chains results in their intracellular accumulation in two forms: free of and associated with their light chain subunit (beta(2)-microglobulin). Both intermediates are retained in the endoplasmic reticulum by promiscuous and HLA-dedicated chaperones and are poorly associated with peptide antigens. In this study, the eight serologically defined HLA-C alleles and the interlocus recombinant HLA-B46 allele (sharing the HLA-C-specific motif KYRV at residues 66-76 of the alpha1-domain alpha-helix) were compared with a large series of HLA-B and HLA-A alleles. Pulse-labeling experiments with HLA-C transfectants and HLA homozygous cell lines demonstrated that KYRV alleles accumulate as free heavy chains because of both poor assembly and post-assembly instability. Reactivity with antibodies to mapped linear epitopes, co-immunoprecipitation experiments, and molecular dynamics simulation studies additionally showed that the KYRV motif confers association to the HLA-dedicated chaperones TAP and tapasin as well as reduced plasticity and unfolding in the peptide-binding groove. Finally, in vitro assembly experiments in cell extracts of the T2 and 721.220 mutant cell lines demonstrated that HLA-Cw1 retains the ability to form a peptide-receptive interface despite a lack of TAP and functional tapasin, respectively. In the context of the available literature, these results indicate that a single locus-specific biosynthetic bottleneck renders HLA-C peptide-selective (rather than peptide-unreceptive) and a preferential natural killer cell ligand
- …