7 research outputs found

    A role for taurine in mitochondrial function

    Get PDF
    The mitochondrial pH gradient across the inner-membrane is stabilised by buffering of the matrix. A low-molecular mass buffer compound has to be localised in the matrix to maintain its alkaline pH value. Taurine is found ubiquitously in animal cells with concentrations in the millimolar range and its pKa value is determined to 9.0 (25°C) and 8.6 (37°C), respectively. Localisation of such a low-molecular buffer in the mitochondrial matrix, transforms the matrix into a biochemical reaction chamber for the important matrix-localised enzyme systems. Three acyl-CoA dehydrogenase enzymes, which are pivotal for beta-oxidation of fatty acids, are demonstrated to have optimal activity in a taurine buffer. By application of the model presented, taurine depletion caused by hyperglycemia could provide a link between mitochondrial dysfunction and diabetes

    Cholestasis alters brain lipid and bile acid composition and compromises motor function in neonatal piglets

    No full text
    Infants with neonatal cholestasis are prone to neurodevelopmental deficits, however, the underlying pathogenesis is unclear. Lipid malabsorption and accumulation of potentially neurotoxic molecules in the blood such as bile acids are important yet relatively unexplored pathways. Here, we developed a translational piglet model to understand how the molecular bile acid and lipid composition of the brain is affected by this disease and relates to motor function. Piglets (8‐days old) had bile duct ligation or sham surgery and were fed a formula diet for 3 weeks. Alongside sensory‐motor deficits observed in bile duct‐ligated animals, we found a shift toward a more hydrophilic and conjugated bile acid profile in the brain. Additionally, comprehensive lipidomics of the cerebellum revealed a decrease in total lipids including phosphatidylinositols and phosphatidylserines and increases in lysophospholipid species. This was paralleled by elevated cerebellar expression of genes related to inflammation and tissue damage albeit without significant impact on the brain transcriptome. This study offers new insights into the developing brain's molecular response to neonatal cholestasis indicating that bile acids and lipids may contribute in mediating motor deficits
    corecore