4,123 research outputs found

    True and False Foodplants of \u3ci\u3eCallosamia Promethea\u3c/i\u3e (Lepidoptera: Saturniidae) in Southern Michigan

    Get PDF
    A survey in 1980 of the associations of over 400 cocoons of Callosamia promethea Drury in vegetation along and adjacent to southern Michigan roadsides gave evidence for seven species of true larval foodplants (not including two others known in the area from other studies) and 17 species of false foodplants, the latter determined by the (1) rarity of their association with cocoons, (2) only one or two cocoons per plant, and (3) their proximity to a well known true foodplant. Three species, sassafras, black cherry, and buttonbush, are evidently the most important true foodplants in this area. Comparisons are made of the foodplants in terms of past literature, geography, and taxonomic relationships

    Evaluation of the Importance of Time-Frequency Contributions to Speech Intelligibility in Noise

    Get PDF
    Recent studies on binary masking techniques make the assumption that each time-frequency (T-F) unit contributes an equal amount to the overall intelligibility of speech. The present study demonstrated that the importance of each T-F unit to speech intelligibility varies in accordance with speech content. Specifically, T-F units are categorized into two classes, speech-present T-F units and speech-absent T-F units. Results indicate that the importance of each speech-present T-F unit to speech intelligibility is highly related to the loudness of its target component, while the importance of each speech-absent T-F unit varies according to the loudness of its masker component. Two types of mask errors are also considered, which include miss and false alarm errors. Consistent with previous work, false alarm errors are shown to be more harmful to speech intelligibility than miss errors when the mixture signal-to-noise ratio (SNR) is below 0 dB. However, the relative importance between the two types of error is conditioned on the SNR level of the input speech signal. Based on these observations, a mask-based objective measure, the loudness weighted hit-false, is proposed for predicting speech intelligibility. The proposed objective measure shows significantly higher correlation with intelligibility compared to two existing mask-based objective measures

    Modeling of Wind Turbine Gearbox Mounting

    Get PDF
    In this paper three bushing models are evaluated to find a best practice in modeling the mounting of wind turbine gearboxes. Parameter identification on measurements has been used to determine the bushing parameters for dynamic simulation of a gearbox including main shaft. The stiffness of the main components of the gearbox has been calculated. The torsional stiffness of the main shaft, gearbox and the mounting of the gearbox are of same order of magnitude, and eigenfrequency analysis clearly reveals that the stiffness of the gearbox mounting is of importance when modeling full wind turbine drivetrains

    Static and Dynamic Critical Behavior of a Symmetrical Binary Fluid: A Computer Simulation

    Full text link
    A symmetrical binary, A+B Lennard-Jones mixture is studied by a combination of semi-grandcanonical Monte Carlo (SGMC) and Molecular Dynamics (MD) methods near a liquid-liquid critical temperature TcT_c. Choosing equal chemical potentials for the two species, the SGMC switches identities (ABA{\rm A} \to {\rm B} \to {\rm A}) to generate well-equilibrated configurations of the system on the coexistence curve for T<TcT<T_c and at the critical concentration, xc=1/2x_c=1/2, for T>TcT>T_c. A finite-size scaling analysis of the concentration susceptibility above TcT_c and of the order parameter below TcT_c is performed, varying the number of particles from N=400 to 12800. The data are fully compatible with the expected critical exponents of the three-dimensional Ising universality class. The equilibrium configurations from the SGMC runs are used as initial states for microcanonical MD runs, from which transport coefficients are extracted. Self-diffusion coefficients are obtained from the Einstein relation, while the interdiffusion coefficient and the shear viscosity are estimated from Green-Kubo expressions. As expected, the self-diffusion constant does not display a detectable critical anomaly. With appropriate finite-size scaling analysis, we show that the simulation data for the shear viscosity and the mutual diffusion constant are quite consistent both with the theoretically predicted behavior, including the critical exponents and amplitudes, and with the most accurate experimental evidence.Comment: 35 pages, 13 figure

    Density of states of helium droplets

    Full text link
    Accurate analytical expressions for the state densities of liquid He-4 droplets are derived, incorporating the ripplon and phonon degrees of freedom. The microcanonical temperature and the ripplon angular momentum level density are also evaluated. The approach is based on inversions and systematic expansions of canonical thermodynamic properties.Comment: 20 pages, 5 figure

    Critical Dynamics in a Binary Fluid: Simulations and Finite-size Scaling

    Full text link
    We report comprehensive simulations of the critical dynamics of a symmetric binary Lennard-Jones mixture near its consolute point. The self-diffusion coefficient exhibits no detectable anomaly. The data for the shear viscosity and the mutual-diffusion coefficient are fully consistent with the asymptotic power laws and amplitudes predicted by renormalization-group and mode-coupling theories {\it provided} finite-size effects and the background contribution to the relevant Onsager coefficient are suitably accounted for. This resolves a controversy raised by recent molecular simulations.Comment: 4 pages, 4 figure

    Temperature dependence of spatially heterogeneous dynamics in a model of viscous silica

    Full text link
    Molecular dynamics simulations are performed to study spatially heterogeneous dynamics in a model of viscous silica above and below the critical temperature of the mode coupling theory, TMCTT_{MCT}. Specifically, we follow the evolution of the dynamic heterogeneity as the temperature dependence of the transport coefficients shows a crossover from non-Arrhenius to Arrhenius behavior when the melt is cooled. It is demonstrated that, on intermediate time scales, a small fraction of oxygen and silicon atoms are more mobile than expected from a Gaussian approximation. These highly mobile particles form transient clusters larger than that resulting from random statistics, indicating that dynamics are spatially heterogeneous. An analysis of the clusters reveals that the mean cluster size is maximum at times intermediate between ballistic and diffusive motion, and the maximum size increases with decreasing temperature. In particular, the growth of the clusters continues when the transport coefficients follow an Arrhenius law. These findings imply that the structural relaxation in silica cannot be understood as a statistical bond breaking process. Though the mean cluster sizes for silica are at the lower end of the spectrum of values reported in the literature, we find that spatially heterogeneous dynamics in strong and fragile glass formers are similar on a qualitative level. However, different from results for fragile liquids, we show that correlated particle motion along quasi one-dimensional, string-like paths is of little importance for the structural relaxation in this model of silica, suggesting that string-like motion is suppressed by the presence of covalent bonds.Comment: 13 pages, 11 figure

    Superparamagnetic iron oxide polyacrylic acid coated {\gamma}-Fe2O3 nanoparticles does not affect kidney function but causes acute effect on the cardiovascular function in healthy mice

    Full text link
    This study describes the distribution of intravenously injected polyacrylic acid (PAA) coated {\gamma}-Fe2O3 NPs (10 mg kg-1) at the organ, cellular and subcellular levels in healthy BALB/cJ mice and in parallel addresses the effects of NP injection on kidney function, blood pressure and vascular contractility. Magnetic resonance imaging (MRI) and transmission electron microscopy (TEM) showed accumulation of NPs in the liver within 1h after intravenous infusion, accommodated by intracellular uptake in endothelial and Kupffer cells with subsequent intracellular uptake in renal cells, particularly the cytoplasm of the proximal tubule, in podocytes and mesangial cells. The renofunctional effects of NPs were evaluated by arterial acid-base status and measurements of glomerular filtration rate (GFR) after instrumentation with chronically indwelling catheters. Arterial pH was 7.46 and 7.41 in mice 0.5 h after injections of saline or NP, and did not change over the next 12h. In addition, the injections of NP did not affect arterial PCO2 or [HCO3-] either. Twenty-four and 96h after NP injections, the GFR averaged 11.0 and 13.0 ml min-1 g-1, respectively, values which were statistically comparable with controls (14.0 and 14.0 ml min-1 g-1). Mean arterial blood pressure (MAP) decreased 12-24h after NP injections (111 vs 123 min-1) associated with a decreased contractility of small mesenteric arteries revealed by myography to characterise endothelial function. In conclusion, our study demonstrates that accumulation of superparamagnetic iron oxide nanoparticles does not affect kidney function in healthy mice but temporarily decreases blood pressure.Comment: 21 pages, 12 figures, published in Toxicology and Applied Pharmacology 201
    corecore