50,652 research outputs found
Dislocation subgrain structures and modeling the plastic hardening of metallic single crystals
A single crystal plasticity theory for insertion into finite element simulation is formulated using sequential laminates to model subgrain dislocation structures. It is known that local models do not adequately account for latent hardening, as latent hardening is not only a material property, but a nonlocal property (e.g. grain size and shape). The addition of the nonlocal energy from the formation of subgrain structure dislocation walls and the boundary layer misfits provide both latent and self-hardening of a crystal slip. Latent hardening occurs as the formation of new dislocation walls limits motion of new mobile dislocations, thus hardening future slip systems. Self-hardening is accomplished by an evolution of the subgrain structure length scale. The substructure length scale is computed by minimizing the nonlocal energy. The minimization of the nonlocal energy is a competition between the dislocation wall energy and the boundary layer energies. The nonlocal terms are also directly minimized within the subgrain model as they affect deformation response. The geometrical relationship between the dislocation walls and slip planes affecting the dislocation mean free path is taken into account, giving a first-order approximation to shape effects. A coplanar slip model is developed due to requirements while modeling the subgrain structure. This subgrain structure plasticity model is noteworthy as all material parameters are experimentally determined rather than fit. The model also has an inherit path dependence due to the formation of the subgrain structures. Validation is accomplished by comparison with single crystal tension test results
Testing Asteroseismic Radii of Dwarfs and Subgiants with Kepler and Gaia
We test asteroseismic radii of Kepler main-sequence and subgiant stars by
deriving their parallaxes which are compared with those of the first Gaia data
release. We compute radii based on the asteroseismic scaling relations as well
as by fitting observed oscillation frequencies to stellar models for a subset
of the sample, and test the impact of using effective temperatures from either
spectroscopy or the infrared flux method. An offset of 3%, showing no
dependency on any stellar parameters, is found between seismic parallaxes
derived from frequency modelling and those from Gaia. For parallaxes based on
radii from the scaling relations, a smaller offset is found on average;
however, the offset becomes temperature dependent which we interpret as
problems with the scaling relations at high stellar temperatures. Using the
hotter infrared flux method temperature scale, there is no indication that
radii from the scaling relations are inaccurate by more than about 5%. Taking
the radii and masses from the modelling of individual frequencies as reference
values, we seek to correct the scaling relations for the observed temperature
trend. This analysis indicates that the scaling relations systematically
overestimate radii and masses at high temperatures, and that they are accurate
to within 5% in radius and 13% in mass for main-sequence stars with
temperatures below 6400 K. However, further analysis is required to test the
validity of the corrections on a star-by-star basis and for more evolved stars.Comment: 12 pages, 9 figures. Accepted for publication in MNRA
The Chemical Composition of an Extrasolar Minor Planet
We report the relative abundances of 17 elements in the atmosphere of the
white dwarf star GD 362, material that, very probably, was contained previously
in a large asteroid or asteroids with composition similar to the Earth/Moon
system. The asteroid may have once been part of a larger parent body not unlike
one of the terrestrial planets of our solar system.Comment: ApJ, in pres
The T2K experiment and its time projection chambers
The Tokai to Kamioka (T2K) experiment [1] is a long baseline neutrino oscillation experiment located in Japan and its goal is to gain a more complete understanding of the neutrino oscillation parameters. A highly pure muon neutrino beam is directed from the accelerator center JPARC towards the Super-Kamiokande (SK) detector, which is 295 km away. A key element of the design of the T2K facility is the use of an off-axis technique. The main physics goals of T2K are to measure the mixing angle Ξ13 in a Îœe appearance experiment and improve the measurement of the atmospheric parameters âm 2 23 and Ξ23 using the Μ” disappearance channel. The near detector (ND280), located 280 m away from the target, will measure the neutrino beam properties and the neutrino interaction cross section and kinematics before the oscillation, in order to predict the relevant neutrino interactions at SK. It consistes of a magnet, a Pi-Zero Detector (optimized for measuring the rate of neutral current Ï0 production), an electromagnetic calorimeter (whose main purpose is to measure the photons produced in ND280), a Side Muon Range Detector (to measure the range of muons that exit the sides of ND280) and a tracker (optimized for measuring the momenta of charged particles). The tracking device consists of a sandwich of three time projection chambers (TPCs) and two fine grained detectors (FGDs) which provide the target material. An overview of the TPC calibration methods and some results from the tests done at CERN to study the performance of the TPC readout modules are presented
Enceladus: Cassini observations and implications for the search for life
Aims. The recent Cassini discovery of water vapor plumes ejected from the south pole of the Saturnian satellite, Enceladus, presents a unique window of opportunity for the detection of extant life in our solar system.
Methods. With its significant geothermal energy source propelling these plumes >80 km from the surface of the moon and the ensuing large temperature gradient with the surrounding environment, it is possible to have the weathering of rocks by liquid water at the rock/liquid interface. For the cases of the putatively detected salt-water oceans beneath the ice crusts of Europa and Callisto, an isolated subsurface ocean without photosynthesis or contact with an oxidizing atmosphere will approach chemical equilibrium and annihilate any ecosystems dependent on redox gradients unless there is a substantial alternative energy source. This thermodynamic tendency imposes severe constraints on any biota that is based on chemical energy. On Enceladus, the weathering of rocks by liquid water and any concomitant radioactive emissions are possible incipient conditions for life. If there is CO, CO2 and NH3 present in the spectra obtained from the plume, then this is possible evidence that amino acids could be formed at the rock/liquid interface of Enceladus. The combination of a hydrological cycle, chemical redox gradient and geochemical cycle give favorable conditions for life.
Results. We discuss the search for signatures of these species and organics in the Cassini UVIS spectra of the plume and implications for the possible detection of life
Effective Dielectric Tensor for Electromagnetic Wave Propagation in Random Media
We derive exact strong-contrast expansions for the effective dielectric
tensor \epeff of electromagnetic waves propagating in a two-phase composite
random medium with isotropic components explicitly in terms of certain
integrals over the -point correlation functions of the medium. Our focus is
the long-wavelength regime, i.e., when the wavelength is much larger than the
scale of inhomogeneities in the medium. Lower-order truncations of these
expansions lead to approximations for the effective dielectric constant that
depend upon whether the medium is below or above the percolation threshold. In
particular, we apply two- and three-point approximations for \epeff to a
variety of different three-dimensional model microstructures, including
dispersions of hard spheres, hard oriented spheroids and fully penetrable
spheres as well as Debye random media, the random checkerboard, and
power-law-correlated materials. We demonstrate the importance of employing
-point correlation functions of order higher than two for high
dielectric-phase-contrast ratio. We show that disorder in the microstructure
results in an imaginary component of the effective dielectric tensor that is
directly related to the {\it coarseness} of the composite, i.e., local
volume-fraction fluctuations for infinitely large windows. The source of this
imaginary component is the attenuation of the coherent homogenized wave due to
scattering. We also remark on whether there is such attenuation in the case of
a two-phase medium with a quasiperiodic structure.Comment: 40 pages, 13 figure
Quantum Separability and Entanglement Detection via Entanglement-Witness Search and Global Optimization
We focus on determining the separability of an unknown bipartite quantum
state by invoking a sufficiently large subset of all possible
entanglement witnesses given the expected value of each element of a set of
mutually orthogonal observables. We review the concept of an entanglement
witness from the geometrical point of view and use this geometry to show that
the set of separable states is not a polytope and to characterize the class of
entanglement witnesses (observables) that detect entangled states on opposite
sides of the set of separable states. All this serves to motivate a classical
algorithm which, given the expected values of a subset of an orthogonal basis
of observables of an otherwise unknown quantum state, searches for an
entanglement witness in the span of the subset of observables. The idea of such
an algorithm, which is an efficient reduction of the quantum separability
problem to a global optimization problem, was introduced in PRA 70 060303(R),
where it was shown to be an improvement on the naive approach for the quantum
separability problem (exhaustive search for a decomposition of the given state
into a convex combination of separable states). The last section of the paper
discusses in more generality such algorithms, which, in our case, assume a
subroutine that computes the global maximum of a real function of several
variables. Despite this, we anticipate that such algorithms will perform
sufficiently well on small instances that they will render a feasible test for
separability in some cases of interest (e.g. in 3-by-3 dimensional systems)
- âŠ