61,363 research outputs found

    Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction

    Get PDF
    © 2016 The AuthorsDislocations in geological minerals are fundamental to the creep processes that control large-scale geodynamic phenomena. However, techniques to quantify their densities, distributions, and types over critical subgrain to polycrystal length scales are limited. The recent advent of high-angular resolution electron backscatter diffraction (HR-EBSD), based on diffraction pattern cross-correlation, offers a powerful new approach that has been utilised to analyse dislocation densities in the materials sciences. In particular, HR-EBSD yields significantly better angular resolution (<0.01°) than conventional EBSD (~0.5°), allowing very low dislocation densities to be analysed. We develop the application of HR-EBSD to olivine, the dominant mineral in Earths upper mantle by testing (1) different inversion methods for estimating geometrically necessary dislocation (GND) densities, (2) the sensitivity of the method under a range of data acquisition settings, and (3) the ability of the technique to resolve a variety of olivine dislocation structures. The relatively low crystal symmetry (orthorhombic) and few slip systems in olivine result in well constrained GND density estimates. The GND density noise floor is inversely proportional to map step size, such that datasets can be optimised for analysing either short wavelength, high density structures (e.g. subgrain boundaries) or long wavelength, low amplitude orientation gradients. Comparison to conventional images of decorated dislocations demonstrates that HR-EBSD can characterise the dislocation distribution and reveal additional structure not captured by the decoration technique. HR-EBSD therefore provides a highly effective method for analysing dislocations in olivine and determining their role in accommodating macroscopic deformation

    Rental Housing and the Natural Vacancy Rate

    Get PDF
    This study uses 1989-2005 data for the Seattle metropolitan area to test the natural vacancy rate hypothesis for rental housing markets using a new methodology. Findings support the existence of a natural vacancy rate for apartments that varies over time, and in some cases across apartment submarkets. Results show a decline in the natural vacancy rate in the time period following the introduction and growth of the Web. Results also show significant differences in natural vacancy rates for different geographic subareas. No significant differences in the natural vacancy rate are found for different apartment types.

    Dislocation subgrain structures and modeling the plastic hardening of metallic single crystals

    Get PDF
    A single crystal plasticity theory for insertion into finite element simulation is formulated using sequential laminates to model subgrain dislocation structures. It is known that local models do not adequately account for latent hardening, as latent hardening is not only a material property, but a nonlocal property (e.g. grain size and shape). The addition of the nonlocal energy from the formation of subgrain structure dislocation walls and the boundary layer misfits provide both latent and self-hardening of a crystal slip. Latent hardening occurs as the formation of new dislocation walls limits motion of new mobile dislocations, thus hardening future slip systems. Self-hardening is accomplished by an evolution of the subgrain structure length scale. The substructure length scale is computed by minimizing the nonlocal energy. The minimization of the nonlocal energy is a competition between the dislocation wall energy and the boundary layer energies. The nonlocal terms are also directly minimized within the subgrain model as they affect deformation response. The geometrical relationship between the dislocation walls and slip planes affecting the dislocation mean free path is taken into account, giving a first-order approximation to shape effects. A coplanar slip model is developed due to requirements while modeling the subgrain structure. This subgrain structure plasticity model is noteworthy as all material parameters are experimentally determined rather than fit. The model also has an inherit path dependence due to the formation of the subgrain structures. Validation is accomplished by comparison with single crystal tension test results

    Facilitating Humanitarian Access to Pharmaceutical and Agricultural Innovation

    Get PDF
    Calls for intellectual property licensing strategies in the pharmaceutical and agricultural sectors that promote humanitarian access to product innovations for the benefit of the disadvantaged. Includes profiles of successful and promising strategies

    Phase diagram of a polydisperse soft-spheres model for liquids and colloids

    Get PDF
    The phase diagram of soft spheres with size dispersion has been studied by means of an optimized Monte Carlo algorithm which allows to equilibrate below the kinetic glass transition for all sizes distribution. The system ubiquitously undergoes a first order freezing transition. While for small size dispersion the frozen phase has a crystalline structure, large density inhomogeneities appear in the highly disperse systems. Studying the interplay between the equilibrium phase diagram and the kinetic glass transition, we argue that the experimentally found terminal polydispersity of colloids is a purely kinetic phenomenon.Comment: Version to be published in Physical Review Letter

    Tunable effective g-factor in InAs nanowire quantum dots

    Full text link
    We report tunneling spectroscopy measurements of the Zeeman spin splitting in InAs few-electron quantum dots. The dots are formed between two InP barriers in InAs nanowires with a wurtzite crystal structure grown by chemical beam epitaxy. The values of the electron g-factors of the first few electrons entering the dot are found to strongly depend on dot size and range from close to the InAs bulk value in large dots |g^*|=13 down to |g^*|=2.3 for the smallest dots. These findings are discussed in view of a simple model.Comment: 4 pages, 3 figure

    Lattice model for cold and warm swelling of polymers in water

    Full text link
    We define a lattice model for the interaction of a polymer with water. We solve the model in a suitable approximation. In the case of a non-polar homopolymer, for reasonable values of the parameters, the polymer is found in a non-compact conformation at low temperature; as the temperature grows, there is a sharp transition towards a compact state, then, at higher temperatures, the polymer swells again. This behaviour closely reminds that of proteins, that are unfolded at both low and high temperatures.Comment: REVTeX, 5 pages, 2 EPS figure
    corecore