520 research outputs found

    Finite size effects in a model for plasticity of amorphous composites

    Full text link
    We discuss the plastic behavior of an amorphous matrix reinforced by hard particles. A mesoscopic depinning-like model accounting for Eshelby elastic interactions is implemented. Only the effect of a plastic disorder is considered. Numerical results show a complex size-dependence of the effective flow stress of the amorphous composite. In particular the departure from the mixing law shows opposite trends associated to the competing effects of the matrix and the reinforcing particles respectively. The reinforcing mechanisms and their effects on localization are discussed. Plastic strain is shown to gradually concentrate on the weakest band of the system. This correlation of the plastic behavior with the material structure is used to design a simple analytical model. The latter nicely captures reinforcement size effects in (logN/N)1/2-(\log N/N)^{1/2} observed numerically. Predictions of the effective flow stress accounting for further logarithmic corrections show a very good agreement with numerical results.Comment: 18 pages, 19 figure

    Acyl-CoA-binding protein (ACBP) localizes to the endoplasmic reticulum and Golgi in a ligand-dependent manner in mammalian cells

    Get PDF
    International audienceIn the present study, we microinjected fluorescently labelled liver bovine ACBP (FACI-50), into HeLa and bovine mammary gland epithelial (BMGE) cell lines to characterize the localization and dynamics of ACBP in living cells. Results showed that ACBP targeted to the endoplasmic reticulum (ER) and Golgi in a ligand-binding dependent manner. A variant Y28F/K32A-FACI-50, which is unable to bind acyl-CoA, did no longer show association with ER and became segregated from Golgi, as analysed by intensity correlation calculations. Depletion of fatty acids from cells by addition of fatty acid free BSA (FAFBSA) significantly decreased FACI-50 association with Golgi, while fatty acid overloading increased Golgi-association, strongly supporting that ACBP associates with Golgi in a ligand-dependent manner. Fluorescence recovery after photobleaching (FRAP) showed that the fatty acid induced targeting of FACI-50 to Golgi resulted in a 5-fold reduction in FACI-50 mobility. We suggest that ACBP is targeted to ER and Golgi in a ligand-binding dependent manner in living cells, and propose that ACBP may be involved in vesicular trafficking

    Orthologous genes identified by transcriptome sequencing in the spider genus Stegodyphus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The evolution of sociality in spiders involves a transition from an outcrossing to a highly inbreeding mating system, a shift to a female biased sex ratio, and an increase in the reproductive skew among individuals. Taken together, these features are expected to result in a strong reduction in the effective population size. Such a decline in effective population size is expected to affect population genetic and molecular evolutionary processes, resulting in reduced genetic diversity and relaxed selective constraint across the genome. In the genus <it>Stegodyphus</it>, permanent sociality and regular inbreeding has evolved independently three times from periodic-social (outcrossing) ancestors. This genus is therefore an ideal model for comparative studies of the molecular evolutionary and population genetic consequences of the transition to a regularly inbreeding mating system. However, no genetic resources are available for this genus.</p> <p>Results</p> <p>We present the analysis of high throughput transcriptome sequencing of three <it>Stegodyphus </it>species. Two of these are periodic-social (<it>Stegodyphus lineatus </it>and <it>S.tentoriicola</it>) and one is permanently social (<it>S. mimosarum</it>). From non-normalized cDNA libraries, we obtained on average 7,000 putative uni-genes for each species. Three-way orthology, as predicted from reciprocal BLAST, identified 1,792 genes that could be used for cross-species comparison. Open reading frames (ORFs) could be deduced from 1,345 of the three-way alignments. Preliminary molecular analyses suggest a five- to ten-fold reduction in heterozygosity in the social <it>S. mimosarum </it>compared with the periodic-social species. Furthermore, an increased ratio of non-synonymous to synonymous polymorphisms in the social species indicated relaxed efficiency of selection. However, there was no sign of relaxed selection on the phylogenetic branch leading to <it>S. mimosarum</it>.</p> <p>Conclusions</p> <p>The 1,792 three-way ortholog genes identified in this study provide a unique resource for comparative studies of the eco-genomics, population genetics and molecular evolution of repeated evolution of inbreeding sociality within the <it>Stegodyphus </it>genu<it>s</it>. Preliminary analyses support theoretical expectations of depleted heterozygosity and relaxed selection in the social inbreeding species. Relaxed selection could not be detected in the <it>S. mimosarum </it>lineage, suggesting that there has been a recent transition to sociality in this species.</p

    Salicylketoximes as inhibitors of Glucose Transporters

    Get PDF
    Some derivatives of the 4-arylsalicylketoximes series displayed inhibitory effects on glucose transport and on cell proliferation in several biological assays,[1] resulting to be effective GLUT1 inhibitors also in GLUT1-containing giant vesicles. GLUT1 is one of the 14 glucose transporter isoforms, widely overexpressed in many cancer types. Thus, for the discovered properties, the oximes of interest represent interesting candidates for anticancer therapy. Variously substituted 4-arylsalicylketoximes (3, Fig.1) were synthetized via Suzuki cross-coupling and a subsequent condensation of the resulting biaryl-ketone intermediates with hydroxylamine hydrochloride. [1] Rat GLUT1 membrane proteins were produced by Pichia Pastoris cultures, and purified following GLUT1 purification protocols, [2] which were largely revised to avoid the protein cleavage. Compounds 3a, 3b, 3e, and 3f efficiently inhibited glucose uptake in GLUT1-containing giant vesicle assays. [3] To study the nature of the binding process between GLUT1 and the synthetic compounds, many crystallization attempts were set up with 3a and 3e using Lipidic Cubic Phase method, which produced many small crystals. Since many isoforms of GLUTs are overexpressed in cancer cells, inhibition of other GLUT isoforms, such as GLUT3, will be tested in the near future. In conclusion, 4-arylsalicylketoximes showed good inhibition of GLUT1 isoform. First results from GLUT3-giant vesicles assays revealed that, within this series of compounds, 3a is the most selective GLUT1-inhibitor. Further assays with GLUTs-containing giant vesicle and crystallization attempts are currently underway. [1] Granchi C, Qian Y, Lee H.Y, Paterni I, Pasero C, Iegre J, Carlson K. E, Tuccinardi T, Chen X, Katzenellenbogen J. A, Hergenrother P. J, Minutolo F, ChemMedChem. 2015; 1892–1900. [2] Venskutonyté R, Elbing K, Lindkvist-Petersson K, Methods Mol Biol. 2018; 1713, 1–13. [3] Hansen J.H, Elbing K, Thompson J.R, Malmstadt N, Lindkvist-Petersson K, Chem. Commun. 2015; 51, 2316–2319

    ASSESSING KINEMATICS AND KINETICS OF HIGH-SPEED RUNNING USING INERTIAL MOTION CAPTURE: A PRELIMINARY ANALYSIS

    Get PDF
    The purpose of this study was to determine whether inertial motion capture (IMC) in combination with musculoskeletal modeling is a suitable method to assess lower limb kinematics and kinetics during high-speed running. Optical motion capture (OMC), IMC and ground reaction forces (GRF) were used as input for musculoskeletal models. Kinematics showed excellent correlations (knee: ρ=0.98, rRMSE=21.0%, hip: ρ=0.95, rRMSE=18.5 %, ankle: ρ=0.93, rRMSE=46.6%). The ground reaction force predictions showed varying results (anteroposterior: ρ=0.77, rRMSE=33.4%, mediolateral: ρ=0.04, rRMSE=69.1%, vertical: ρ=0.78, rRMSE=25.7%). The examined IMC and musculoskeletal modeling approach was proven a useful alternative to OMC and force plates for outdoor measurements in high-speed running

    Glucose transporters: production, crystallization and inhibition

    Get PDF
    Glucose transporters (GLUTs) comprise a family of 14 membrane proteins that regulate glucose uptake into the cell. Different types of GLUTs are expressed in various tissues and play a crucial role in glucose metabolism. Cancer cells are highly dependant on glucose and therefore GLUTs are possible drug targets for cancer therapy. In order to block the glucose uptake facilitated by GLUTs, various inhibitors are studied and both natural and synthetic compounds having an inhibitory effect on glucose uptake have been discovered. High resolution X-ray structure of the GLUT-inhibitor complex would provide a detailed understanding of protein-inhibitor interactions and contribute to facilitating the development of new derivatives. The focus of this study is on a glucose transporter 1 (GLUT1). The GLUT1 has been produced and crystallization trials set up, which resulted in microcrystals. A series of salicylketoxime based compounds have been shown to inhibit GLUT1 and two lead compounds displaying the highest inhibition have been identified in a giant vesicle assay. The main goal of the study is to determine the structure of the GLUT1 with selected inhibitors. Moreover, studies on one more glucose transporter GLUT3 are carried out to investigate the selectivity of the salcylketoxime compounds

    Metabolic syndrome and subsequent risk of type 2 diabetes and cardiovascular disease in elderly women:Challenging the current definition

    Get PDF
    The prognostic value of the metabolic syndrome (MetS) is believed to vary with age. With an elderly population expecting to triple by 2060, it is important to evaluate the validity of MetS in this age group. We examined the association of MetS risk factors with later risk of type 2 diabetes (T2DM) and cardiovascular disease (CVD) in elderly Caucasian women. We further investigated if stratification of individuals not defined with MetS would add predictive power in defining future disease prevalence of individuals with MetS. The Prospective Epidemiological Risk Factor Study, a community-based cohort study, followed 3905 Danish women since 2000 (age: 70.1 ± 6.5) with no previous diagnosis of T2DM or CVD, holding all measurements used for MetS definition; central obesity, hypertension, hyperlipidemia, and hyperglycemia combined with register-based follow-up information. Elderly women with defined MetS presented a 6.3-fold increased risk of T2DM (95% confidence interval: [3.74–10.50]) and 1.7-fold increased risk of CVD (1.44–2.05) compared to women with no MetS risk factors. Subdividing the control group without defined MetS revealed that both centrally obese controls and controls holding other MetS risk factors also had increased risk of T2DM (hazard ratio (HR) = 2.21 [1.25–3.93] and HR = 1.75 [1.04–2.96]) and CVD (HR = 1.51 [1.25–1.83] and HR = 1.36 [1.15–1.60]) when compared to controls with no MetS risk factors. MetS in elderly Caucasian women increased risk of future T2DM and CVD. While not defined with MetS, women holding only some risk factors for MetS were also at increased risk of T2DM or CVD compared to women with no MetS risk factors
    corecore