19 research outputs found

    Conductance spectroscopy on Majorana wires and the inverse proximity effect

    Full text link
    Recent experimental searches for signatures of Majorana-like excitations in proximitized semiconducting nanowires involve conductance spectroscopy, where the evidence sought after is a robust zero-bias peak (in longer wires) and its characteristic field-dependent splitting (in shorter wires). Although experimental results partially confirm the theoretical predictions, commonly observed discrepancies still include (i) a zero-bias peak that is significantly lower than the predicted value of 2e2/h2e^2/h and (ii) the absence of the expected "Majorana oscillations" of the lowest-energy modes at higher magnetic fields. Here, we investigate how the inevitable presence of a normal drain lead connected to the hybrid wire can affect the conductance spectrum of the hybrid wire. We present numerical results using a one-band model for the proximitized nanowire, where the superconductor is considered to be in the diffusive regime, described by semi-classical Green functions. We show how the presence of the normal drain could (at least partially) account for the observed discrepancies, and we complement this with analytic results providing more insights in the underlying physics.Comment: 10 pages, 7 figure

    Phase-tunable Majorana bound states in a topological N-SNS junction

    Full text link
    We theoretically study the differential conductance of a one-dimensional normal-superconductor-normal-superconductor (N-SNS) junction with a phase bias applied between the two superconductors. We consider specifically a junction formed by a spin-orbit coupled semiconducting nanowire with regions of the nanowire having superconducting pairing induced by a bulk ss-wave superconductor. When the nanowire is tuned into a topologically non-trivial phase by a Zeeman field, it hosts zero-energy Majorana modes at its ends as well as at the interface between the two superconductors. The phase-dependent splitting of the Majorana modes gives rise to features in the differential conductance that offer a clear distinction between the topologically trivial and non-trivial phases. We calculate the transport properties of the junction numerically and also present a simple analytical model that captures the main properties of the predicted tunneling spectroscopy.Comment: 11 pages, 7 figure

    Nonlocal conductance spectroscopy of Andreev bound states: Symmetry relations and BCS charges

    Full text link
    Two-terminal conductance spectroscopy of superconducting devices is a common tool for probing Andreev and Majorana bound states. Here, we study theoretically a three-terminal setup, with two normal leads coupled to a grounded superconducting terminal. Using a single-electron scattering matrix, we derive the subgap conductance matrix for the normal leads and discuss its symmetries. In particular, we show that the local and the nonlocal elements of the conductance matrix have pairwise identical antisymmetric components. Moreover, we find that the nonlocal elements are directly related to the local BCS charges of the bound states close to the normal probes and we show how the BCS charge of overlapping Majorana bound states can be extracted from experiments.Comment: 7 page

    Sequencing and de novo assembly of 150 genomes from Denmark as a population reference

    Get PDF
    Hundreds of thousands of human genomes are now being sequenced to characterize genetic variation and use this information to augment association mapping studies of complex disorders and other phenotypic traits. Genetic variation is identified mainly by mapping short reads to the reference genome or by performing local assembly. However, these approaches are biased against discovery of structural variants and variation in the more complex parts of the genome. Hence, large-scale de novo assembly is needed. Here we show that it is possible to construct excellent de novo assemblies from high-coverage sequencing with mate-pair libraries extending up to 20 kilobases. We report de novo assemblies of 150 individuals (50 trios) from the GenomeDenmark project. The quality of these assemblies is similar to those obtained using the more expensive long-read technology. We use the assemblies to identify a rich set of structural variants including many novel insertions and demonstrate how this variant catalogue enables further deciphering of known association mapping signals. We leverage the assemblies to provide 100 completely resolved major histocompatibility complex haplotypes and to resolve major parts of the Y chromosome. Our study provides a regional reference genome that we expect will improve the power of future association mapping studies and hence pave the way for precision medicine initiatives, which now are being launched in many countries including Denmark
    corecore