630 research outputs found
Catch crop strategy and nitrate leaching following grazed grass-clover
Cultivation of grassland presents a high risk of nitrate leaching. This study aimed to determine if leaching could be reduced by growing spring barley (Hordeum vulgare L.) as a green crop for silage with undersown Italian ryegrass (Lolium multiflorum Lam.) compared with barley grown to maturity with or without an undersown conventional catch crop of perennial ryegrass (Lolium perenne L.). All treatments received 0,60 or 120 kg of ammonium-N ha-1 in cattle slurry. In spring 2003, two grass-clover fields (3 and 5 years old, respectively, with different management histories) were ploughed. The effects of the treatments on yield and nitrate leaching were determined in the first year, while the residual effects of the treatments were determined in the second year in a crop of spring barley⁄perennial ryegrass. Nitrate leaching was estimated in selected treatments using soil water samples from ceramic cups. The experiment showed that compared with treatments without catch crop, green barley⁄Italian ryegrass reduced leaching by 163–320 kg Nha-1, corresponding to 95–99%, and the perennial ryegrass reduced leaching to between 34 and 86 kg Nha-1, corresponding to a reduction of 80 and 66%. Also, in the second growing season, leaching following catchcrops was reduced compared with the bare soil treatment. It was concluded that the green barley⁄Italian ryegrass offers advantages not only for the environment but also for farmers, for whom it provides a fodder high in roughage and avoids the difficulties with clover fatigue increasingly experienced by Danish farmers
Not “just a bad period”— The impact of a co-created endometriosis social media health campaign: a mixed methods study
Objective: The goal of this study was to evaluate the impact of a visual social media health campaign. The #1in10 campaign was co-created by the Danish Endometriosis Patient Association and women with endometriosis.
Methods: Seven semi-structured interviews were conducted with campaign participants to evaluate their experience of participating. The interviews were then analyzed thematically. Social media metrics on the reach of the campaign were gathered to assess how the campaign had performed.
Results: Seven themes were identified in the interviews: (1) Taboo, (2) Visibility, (3) Awareness, (4) Acknowledgment, (5) Empowerment, (6) Patient Experts, and (7) Community. Throughout the interviews, the women conveyed that they found their participation in the campaign meaningful, as it contributed to creating awareness and recognition of a disease otherwise surrounded by taboo and stigma. Social media metrics show how the #1in10 campaign reached both people inside and outside the endometriosis community. Across the FEMaLe Project's three social media platforms, 208 (51.5%) of engagements were with patients with endometriosis, 96 (23.7%) were with FEMaLe employees and advisers, 94 (23.3%) were with the general public, and 6 (1.5%) were with policymakers. In the month the #1in10 campaign was released, the FEMaLe Project's Twitter and Instagram accounts had more impressions than almost any other month that year (except January on Twitter and November on Instagram). The FEMaLe Project's LinkedIn had the same number of impressions as in other months.
Discussion: The study shows that the #1in10 social media campaign had an impact on three levels: on an individual level for the participating patients, on a communal level for people with endometriosis, and on a wider societal level. The participating patients felt empowered by their involvement with the campaign and the act of coming forward. The participants acted on behalf of their community of people with endometriosis, in the hopes that it would raise awareness and acknowledgment. In return, the community engaged with the campaign and added significantly to the dissemination of its message. On a societal level the campaign has caught particular attention and engagement compared to other posts made on the same social media accounts. Combining qualitative and quantitative methods, this study has demonstrated that the #1in10 campaign had an impact on three different levels: individual, communal, and societal. On an individual level the campaign fostered empowerment for the participating women, because they felt that their participation contributed to making their struggles visible, known, and acknowledged. The participants took part in the campaign on behalf of their community of people with endometriosis, in the hopes that their activistic actions would benefit future members of the community. That the campaign resonated with the community is evident by the fact that 51.5% (N = 208) of the engagement with the campaign was made by members of the community. As such, the community was vital for both the creation and the dissemination of the campaign. The #1in10 campaign performed comparatively well with regards to creating engagements on social media- not just within the community but also in the wider society. While this does not necessarily entail a change in attitude or behavior, it suggests that the co-created and visual nature of the campaign had an impact on the audience
Current Distribution in the Three-Dimensional Random Resistor Network at the Percolation Threshold
We study the multifractal properties of the current distribution of the
three-dimensional random resistor network at the percolation threshold. For
lattices ranging in size from to we measure the second, fourth and
sixth moments of the current distribution, finding {\it e.g.\/} that
where is the conductivity exponent and is the
correlation length exponent.Comment: 10 pages, latex, 8 figures in separate uuencoded fil
Persistence of a particle in the Matheron-de Marsily velocity field
We show that the longitudinal position of a particle in a
-dimensional layered random velocity field (the Matheron-de Marsily
model) can be identified as a fractional Brownian motion (fBm) characterized by
a variable Hurst exponent for . The
fBm becomes marginal at . Moreover, using the known first-passage
properties of fBm we prove analytically that the disorder averaged persistence
(the probability of no zero crossing of the process upto time ) has a
power law decay for large with an exponent for and
for (with logarithmic correction at ), results that
were earlier derived by Redner based on heuristic arguments and supported by
numerical simulations (S. Redner, Phys. Rev. E {\bf 56}, 4967 (1997)).Comment: 4 pages Revtex, 1 .eps figure included, to appear in PRE Rapid
Communicatio
TeV Symmetry and the Little Hierarchy Problem
Constraints from precision electroweak measurements reveal no evidence for
new physics up to 5 - 7 TeV, whereas naturalness requires new particles at
around 1 TeV to address the stability of the electroweak scale. We show that
this "little hierarchy problem" can be cured by introducing a symmetry for new
particles at the TeV scale. As an example, we construct a little Higgs model
with this new symmetry, dubbed T-parity, which naturally solves the little
hierarchy problem and, at the same time, stabilize the electroweak scale up to
10 TeV. The model has many important phenomenological consequences, including
consistency with the precision data without any fine-tuning, a stable
weakly-interacting particle as the dark matter candidate, as well as collider
signals completely different from existing little Higgs models, but rather
similar to the supersymmetric theories with conserved R-parity.Comment: 15 pages, 1 figure; v.2: typos corrected and various minor
modifications/expansions on the presentations. now 16 pages and 1 figure.
version to appear on JHE
Dark Matter Direct Detection with Non-Maxwellian Velocity Structure
The velocity distribution function of dark matter particles is expected to
show significant departures from a Maxwell-Boltzmann distribution. This can
have profound effects on the predicted dark matter - nucleon scattering rates
in direct detection experiments, especially for dark matter models in which the
scattering is sensitive to the high velocity tail of the distribution, such as
inelastic dark matter (iDM) or light (few GeV) dark matter (LDM), and for
experiments that require high energy recoil events, such as many directionally
sensitive experiments. Here we determine the velocity distribution functions
from two of the highest resolution numerical simulations of Galactic dark
matter structure (Via Lactea II and GHALO), and study the effects for these
scenarios. For directional detection, we find that the observed departures from
Maxwell-Boltzmann increase the contrast of the signal and change the typical
direction of incoming DM particles. For iDM, the expected signals at direct
detection experiments are changed dramatically: the annual modulation can be
enhanced by more than a factor two, and the relative rates of DAMA compared to
CDMS can change by an order of magnitude, while those compared to CRESST can
change by a factor of two. The spectrum of the signal can also change
dramatically, with many features arising due to substructure. For LDM the
spectral effects are smaller, but changes do arise that improve the
compatibility with existing experiments. We find that the phase of the
modulation can depend upon energy, which would help discriminate against
background should it be found.Comment: 34 pages, 16 figures, submitted to JCAP. Tables of g(v_min), the
integral of f(v)/v from v_min to infinity, derived from our simulations, are
available for download at http://astro.berkeley.edu/~mqk/dmdd
Can a supernova be located by its neutrinos?
A future core-collapse supernova in our Galaxy will be detected by several
neutrino detectors around the world. The neutrinos escape from the supernova
core over several seconds from the time of collapse, unlike the electromagnetic
radiation, emitted from the envelope, which is delayed by a time of order
hours. In addition, the electromagnetic radiation can be obscured by dust in
the intervening interstellar space. The question therefore arises whether a
supernova can be located by its neutrinos alone. The early warning of a
supernova and its location might allow greatly improved astronomical
observations. The theme of the present work is a careful and realistic
assessment of this question, taking into account the statistical significance
of the various neutrino signals. Not surprisingly, neutrino-electron forward
scattering leads to a good determination of the supernova direction, even in
the presence of the large and nearly isotropic background from other reactions.
Even with the most pessimistic background assumptions, SuperKamiokande (SK) and
the Sudbury Neutrino Observatory (SNO) can restrict the supernova direction to
be within circles of radius and , respectively. Other
reactions with more events but weaker angular dependence are much less useful
for locating the supernova. Finally, there is the oft-discussed possibility of
triangulation, i.e., determination of the supernova direction based on an
arrival time delay between different detectors. Given the expected statistics
we show that, contrary to previous estimates, this technique does not allow a
good determination of the supernova direction.Comment: 11 pages including 2 figures. Revised version corrects typos, adds
some brief comment
Relic Neutralino Densities and Detection Rates with Nonuniversal Gaugino Masses
We extend previous analyses on the interplay between nonuniversalities in the
gaugino mass sector and the thermal relic densities of LSP neutralinos, in
particular to the case of moderate to large tan beta. We introduce a set of
parameters that generalizes the standard unified scenario to cover the complete
allowed parameter space in the gaugino mass sector. We discuss the physical
significance of the cosmologically preferred degree of degeneracy between
charginos and the LSP and study the effect this degree of degeneracy has on the
prospects for direct detection of relic neutralinos in the next round of dark
matter detection experiments. Lastly, we compare the fine tuning required to
achieve a satisfactory relic density with the case of universal gaugino masses,
as in minimal supergravity, and find it to be of a similar magnitude. The
sensitivity of quantifiable measures of fine-tuning on such factors as the
gluino mass and top and bottom masses is also examined.Comment: Uses RevTeX; 14 pages, 16 figure
Large-scale pathways-based association study in amyotrophic lateral sclerosis
Sporadic amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, most likely results from complex genetic and environmental interactions. Although a number of association studies have been performed in an effort to find genetic components of sporadic ALS, most of them resulted in inconsistent findings due to a small number of genes investigated in relatively small sample sizes, while the replication of results was rarely attempted. Defects in retrograde axonal transport, vesicle trafficking and xenobiotic metabolism have been implicated in neurodegeneration and motor neuron death both in human disease and animal models. To assess the role of common genetic variation in these pathways in susceptibility to sporadic ALS, we performed a pathway-based candidate gene case-control association study with replication. Furthermore, we determined reliability of whole genome amplified DNA in a large-scale association study. In the first stage of the study, 1277 putative functional and tagging SNPs in 134 genes spanning 8.7 Mb were genotyped in 822 British sporadic ALS patients and 872 controls using whole genome amplified DNA. To detect variants with modest effect size and discriminate among false positive findings 19 SNPs showing a trend of association in the initial screen were genotyped in a replication sample of 580 German sporadic ALS patients and 361 controls. We did not detect strong evidence of association with any of the genes investigated in the discovery sample (lowest uncorrected P-value 0.00037, lowest permutation corrected P-value 0.353). None of the suggestive associations was replicated in a second sample, further excluding variants with moderate effect size. We conclude that common variation in the investigated pathways is unlikely to have a major effect on susceptibility to sporadic ALS. The genotyping efficiency was only slightly decreased (∼1%) and genotyping quality was not affected using whole genome amplified DNA. It is reliable for large scale genotyping studies of diseases such as ALS, where DNA sample collections are limited because of low disease prevalence and short survival time. © 2007 The Author(s)
Adsorption of mono- and multivalent cat- and anions on DNA molecules
Adsorption of monovalent and multivalent cat- and anions on a deoxyribose
nucleic acid (DNA) molecule from a salt solution is investigated by computer
simulation. The ions are modelled as charged hard spheres, the DNA molecule as
a point charge pattern following the double-helical phosphate strands. The
geometrical shape of the DNA molecules is modelled on different levels ranging
from a simple cylindrical shape to structured models which include the major
and minor grooves between the phosphate strands. The densities of the ions
adsorbed on the phosphate strands, in the major and in the minor grooves are
calculated. First, we find that the adsorption pattern on the DNA surface
depends strongly on its geometrical shape: counterions adsorb preferentially
along the phosphate strands for a cylindrical model shape, but in the minor
groove for a geometrically structured model. Second, we find that an addition
of monovalent salt ions results in an increase of the charge density in the
minor groove while the total charge density of ions adsorbed in the major
groove stays unchanged. The adsorbed ion densities are highly structured along
the minor groove while they are almost smeared along the major groove.
Furthermore, for a fixed amount of added salt, the major groove cationic charge
is independent on the counterion valency. For increasing salt concentration the
major groove is neutralized while the total charge adsorbed in the minor groove
is constant. DNA overcharging is detected for multivalent salt. Simulations for
a larger ion radii, which mimic the effect of the ion hydration, indicate an
increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure
- …