64 research outputs found
Biliary complications after liver transplantation: With special reference to the biliary cast syndrome and techniques of secondary duct repair
In 93 consecutive cases of orthotopic liver transplantation, there were 24 examples of biliary obstruction and eight of bile fistula formation. Six of the obstructed livers developed biliary cast formation so extensive that the smaller intrahepatic ducts became plugged to an extent that they could no longer have been treated by surgical means. In each of the six cases, the most important causative factor was neglected obstruction of the large bile ducts with the intrahepatic lesions apparently being late and secondary. Stone and/or cast formation also occurred in other obstructed livers in the presence of bile fistulas, but these deposits were limited to the large ducts where they could have been or were removed. Although homograft bile undoubtedly has increased lithogenicity at certain postoperative times, the data from the present study have shown that biliary sludge formation essentially is always associated with defective bile duct reconstruction, and the observations have underscored the urgency with which reoperation must be considered. Techniques of secondary intervention have been described, with emphasis on conversion of cholecystojejunostomy to choledochojejunostomy. This operation has permitted salvage of homografts in eight of nine trials and the survival of seven patients. © 1977
Infections Complicating Orthotopic Liver Transplantation: A Study Emphasizing Graft-Related Septicemia
In 93 recipients of 102 orthotopic liver homografts, the incidence of bacteremia or fungemia exceeded 70%. The graft itself was usually an entry site for systemic infection after both immunologic and nonimmunologic parenchymal injury, especially if there was defective biliary drainage. The role of the homograft itself as the special infectious risk factor has prompted increased use of defunctionalized jejunal Roux limbs to reduce graft contamination. It has also stimulated very aggressive postoperative diagnostic efforts to rule out remedial mechanical complications of the transplant. © 1976, American Medical Association. All rights reserved
Cimetidine increases survival of colorectal cancer patients with high levels of sialyl Lewis-X and sialyl Lewis-A epitope expression on tumour cells
Cimetidine has been shown to have beneficial effects in colorectal cancer patients. In this study, a total of 64 colorectal cancer patients who received curative operation were examined for the effects of cimetidine treatment on survival and recurrence. The cimetidine group was given 800 mg day−1 of cimetidine orally together with 200 mg day−1 of 5-fluorouracil, while the control group received 5-fluorouracil alone. The treatment was initiated 2 weeks after the operation and terminated after 1 year. Robust beneficial effects of cimetidine were noted: the 10-year survival rate of the cimetidine group was 84.6% whereas that of control group was 49.8% (P<0.0001). According to our previous observations that cimetidine blocked the expression of E-selectin on vascular endothelium and inhibited the adhesion of cancer cells to the endothelium, we have further stratified the patients according to the expression levels of sialyl Lewis antigens X (sLx) and A (sLa). We found that cimetidine treatment was particularly effective in patients whose tumour had higher sLx and sLa antigen levels. For example, the 10-year cumulative survival rate of the cimetidine group with higher CSLEX staining, recognizing sLx, of tumours was 95.5%, whereas that of control group was 35.1% (P=0.0001). In contrast, in the group of patients with no or low levels CSLEX staining, cimetidine did not show significant beneficial effect (the 10-year survival rate of the cimetidine group was 70.0% and that of control group was 85.7% (P=n.s.)). These results clearly indicate that cimetidine treatment dramatically improved survival in colorectal cancer patients with tumour cells expressing high levels of sLx and sLa
Cimetidine inhibits salivary gland tumor cell adhesion to neural cells and induces apoptosis by blocking NCAM expression
<p>Abstract</p> <p>Background</p> <p>Cimetidine, a histamine type-2 receptor antagonist, has been reported to inhibit the growth of glandular tumors such as colorectal cancer, however the mechanism of action underlying this effect is unknown. Adenoid cystic carcinoma is well known as a malignant salivary gland tumor which preferentially invades neural tissues. We demonstrated previously that human salivary gland tumor (HSG) cells spontaneously express neural cell adhesion molecule (NCAM), that HSG cell proliferation may be controlled via a homophilic (NCAM-NCAM) binding mechanism and that NCAM may be associated with perineural invasion by malignant salivary gland tumors. We further demonstrated that cimetidine inhibited NCAM expression and induced apoptosis in HSG cells. Here, we investigated the effects of cimetidine on growth and perineural/neural invasion of salivary gland tumor cells.</p> <p>Methods</p> <p>In this study, we have examined the effect of cimetidine on cancer cell adhesion to neural cells <it>in vitro</it>, one of the critical steps of cancer invasion and metastasis. We have also used an <it>in vivo </it>carcinogenesis model to confirm the effect of cimetidine.</p> <p>Results</p> <p>We have demonstrated for the first time that cimetidine can block the adhesion of HSG cells to neural cell monolayers and that it can also induce significant apoptosis in the tumor mass in a nude mouse model. We also demonstrated that these apoptotic effects of cimetidine might occur through down-regulation of the cell surface expression of NCAM on HSG cells. Cimetidine-mediated down-regulation of NCAM involved suppression of the nuclear translocation of NF-κB, a transcriptional activator of NCAM gene expression.</p> <p>Conclusion</p> <p>These findings suggest that growth and perineural/neural invasion of salivary gland tumors can be blocked by administration of cimetidine via induction of apoptosis and in which NCAM plays a role.</p
Recommended from our members
Endophytes vs tree pathogens and pests: can they be used as biological control agents to improve tree health?
Like all other plants, trees are vulnerable to attack by a multitude of pests and pathogens. Current control measures for many of these diseases are limited and relatively ineffective. Several methods, including the use of conventional synthetic agro-chemicals, are employed to reduce the impact of pests and diseases. However, because of mounting concerns about adverse effects on the environment and a variety of economic reasons, this limited management of tree diseases by chemical methods is losing ground. The use of biological control, as a more environmentally friendly alternative, is becoming increasingly popular in plant protection. This can include the deployment of soil inoculants and foliar sprays, but the increased knowledge of microbial ecology in the phytosphere, in particular phylloplane microbes and endophytes, has stimulated new thinking for biocontrol approaches. Endophytes are microbes that live within plant tissues. As such, they hold potential as biocontrol agents against plant diseases because they are able to colonize the same ecological niche favoured by many invading pathogens. However, the development and exploitation of endophytes as biocontrol agents will have to overcome numerous challenges. The optimization and improvement of strategies employed in endophyte research can contribute towards discovering effective and competent biocontrol agents. The impact of environment and plant genotype on selecting potentially beneficial and exploitable endophytes for biocontrol is poorly understood. How endophytes synergise or antagonise one another is also an important factor. This review focusses on recent research addressing the biocontrol of plant diseases and pests using endophytic fungi and bacteria, alongside the challenges and limitations encountered and how these can be overcome. We frame this review in the context of tree pests and diseases, since trees are arguably the most difficult plant species to study, work on and manage, yet they represent one of the most important organisms on Earth
Endophytes vs tree pathogens and pests: can they be used as biological control agents to improve tree health?
Like all other plants, trees are vulnerable to attack by a multitude of pests and pathogens. Current control measures for many of these diseases are limited and relatively ineffective. Several methods, including the use of conventional synthetic agro-chemicals, are employed to reduce the impact of pests and diseases. However, because of mounting concerns about adverse effects on the environment and a variety of economic reasons, this limited management of tree diseases by chemical methods is losing ground. The use of biological control, as a more environmentally friendly alternative, is becoming increasingly popular in plant protection. This can include the deployment of soil inoculants and foliar sprays, but the increased knowledge of microbial ecology in the phytosphere, in particular phylloplane microbes and endophytes, has stimulated new thinking for biocontrol approaches. Endophytes are microbes that live within plant tissues. As such, they hold potential as biocontrol agents against plant diseases because they are able to colonize the same ecological niche favoured by many invading pathogens. However, the development and exploitation of endophytes as biocontrol agents will have to overcome numerous challenges. The optimization and improvement of strategies employed in endophyte research can contribute towards discovering effective and competent biocontrol agents. The impact of environment and plant genotype on selecting potentially beneficial and exploitable endophytes for biocontrol is poorly understood. How endophytes synergise or antagonise one another is also an important factor. This review focusses on recent research addressing the biocontrol of plant diseases and pests using endophytic fungi and bacteria, alongside the challenges and limitations encountered and how these can be overcome. We frame this review in the context of tree pests and diseases, since trees are arguably the most difficult plant species to study, work on and manage, yet they represent one of the most important organisms on Earth
- …