5 research outputs found

    CP2 stars as viewed by the uvby Hbeta system

    Full text link
    A new statistical parallax method using the Maximum Likelihood principle is presented, allowing the simultaneous determination of a luminosity calibration, kinematic characteristics and spatial distribution of a given sample. This method has been developed for the exploitation of the Hipparcos data and presents several improvements with respect to the previous ones: the effects of the selection of the sample, the observational errors, the galactic rotation and the interstellar absorption are taken into account as an intrinsic part of the formulation (as opposed to external corrections). Furthermore, the method is able to identify and characterize physically distinct groups in inhomogeneous samples, thus avoiding biases due to unidentified components. Moreover, the implementation used by the authors is based on the extensive use of numerical methods, so avoiding the need for simplification of the equations and thus the bias they could introduce. Several examples of application using simulated samples are presented, to be followed by applications to real samples in forthcoming articles

    CP2 stars as viewed by the uvby Hbeta system

    Full text link
    A new statistical parallax method using the Maximum Likelihood principle is presented, allowing the simultaneous determination of a luminosity calibration, kinematic characteristics and spatial distribution of a given sample. This method has been developed for the exploitation of the Hipparcos data and presents several improvements with respect to the previous ones: the effects of the selection of the sample, the observational errors, the galactic rotation and the interstellar absorption are taken into account as an intrinsic part of the formulation (as opposed to external corrections). Furthermore, the method is able to identify and characterize physically distinct groups in inhomogeneous samples, thus avoiding biases due to unidentified components. Moreover, the implementation used by the authors is based on the extensive use of numerical methods, so avoiding the need for simplification of the equations and thus the bias they could introduce. Several examples of application using simulated samples are presented, to be followed by applications to real samples in forthcoming articles
    corecore