3 research outputs found

    The Use of Corneoscleral Grafts to Maintain Tectonic Stability in Severe Keratolysis

    No full text
    Severe corneal ulcerations, causing major keratolysis with large perforation of the cornea or extending to the limbal region, are an ophthalmic emergency. In these cases, a larger corneoscleral graft can be transplanted to restore tectonic integrity, alleviate pain, save vision, and prevent loss of the eye. Chart review of 34 patients with a corneoscleral graft ≥9.5 mm was conducted. Primary endpoints of the study were tectonic stability defined as no need for another keratoplasty or enucleation. In addition, visual acuity, postoperative complications, and secondary procedures were analyzed. In total, 12 patients (35%) were female. The mean age at transplantation was 65 ± 19 years. The underlying disease was a perforated infectious corneal ulcer in 30 cases (88%). Mean follow up was 675 ± 789 days. Tectonic stability at the end of the follow-up was maintained with a probability of 56% in a Kaplan–Meier analysis. Another penetrating keratoplasty was necessary in six cases (17%) and enucleation in five cases (15%). A corneoscleral transplant remains a viable treatment option to prevent enucleation in severe keratolysis. In our study, this was possible in about half of the cases. Postoperative complications, secondary surgeries, and markedly reduced visual acuity put the advantages into perspective

    High-resolution pediatric reference intervals for 15 biochemical analytes described using fractional polynomials

    No full text
    Objectives: Assessment of children's laboratory test results requires consideration of the extensive changes that occur during physiological development and result in pronounced sex- and age-specific dynamics in many biochemical analytes. Pediatric reference intervals have to account for these dynamics, but ethical and practical challenges limit the availability of appropriate pediatric reference intervals that cover children from birth to adulthood. We have therefore initiated the multi-center data-driven PEDREF project Next-Generation Pediatric Reference Intervals) to create pediatric reference intervals using data from laboratory information systems. Methods: We analyzed laboratory test results from 638,683 patients (217,883-982,548 samples per analyte, a median of 603,745 test results per analyte, and 10,298,067 test results in total) performed during patient care in 13 German centers. Test results from children with repeat measurements were discarded, and we estimated the distribution of physiological test results using a validated statistical approach (kosmic). Results: We report continuous pediatric reference intervals and percentile charts for alanine transaminase, aspartate transaminase, lactate dehydrogenase, alkaline phosphatase, y-glutamyl-transferase, total protein, albumin, creatinine, urea, sodium, potassium, calcium, chloride, anorganic phosphate, and magnesium. Reference intervals are provided as tables and fractional polynomial functions (i.e., mathematical equations) that can be integrated into laboratory information systems. Additionally, Z-scores and percentiles enable the normalization of test results by age and sex to facilitate their interpretation across age groups. Conclusions: The provided reference intervals and percentile charts enable precise assessment of laboratory test results in children from birth to adulthood. Our findings highlight the pronounced dynamics in many biochemical analytes in neonates, which require particular consideration in reference intervals to support clinical decision making most effectively
    corecore