63 research outputs found

    Thyroid hormone uptake in cultured rat anterior pituitary cells: effects of energy status and bilirubin

    Get PDF
    Transport of thyroxine (T(4)) into the liver is inhibited in fasting and by bilirubin, a compound often accumulating in the serum of critically ill patients. We tested the effects of chronic and acute energy deprivation, bilirubin and its precursor biliverdin on the 15-min uptake of [(125)I]tri-iodothyronine ([(125)I]T(3)) and [(125)I]T(4) and on TSH release in rat anterior pituitary cells maintained in primary culture for 3 days. When cells were cultured and incubated in medium without glucose and glutamine to induce chronic energy deprivation, the ATP content was reduced by 45% (P<0. 05) and [(125)I]T(3) uptake by 13% (NS), but TSH release was unaltered. Preincubation (30 min) and incubation (15 min) with 10 microM oligomycin reduced ATP content by 51% (P<0.05) and 53% (P<0. 05) under energy-rich and energy-poor culture conditions respectively; [(125)I]T(3) uptake was reduced by 66% (P<0.05) and 64% (P<0.05). Neither bilirubin nor biliverdin (both 1-200 microM) affected uptake of [(125)I]T(3) or [(125)I]T(4). Bilirubin (1-50 microM) did not alter basal or TRH-induced TSH release. In conclusion, the absence of inhibitory effects of chronic energy deprivation and bilirubin on thyroid hormone uptake by pituitary cells supports the view that the transport is regulated differently than that in the liver

    Grex: A Decentralized Hive Mind

    Get PDF
    Swarm Robotics (SR) faces a series of challenges impeding widespread adoption for real-world applications. Distributed Ledger Technology (DLT) has shown it can solve a number of these challenges. An experiment was conducted to showcase the resolution of these challenges. A search and rescue mission was simulated using drones coupled with single board computers and several simulated agents. Inter-agent communications were facilitated through DLT in a completely decentralized network. A frontend interface was built to demonstrate the ease with which information can be extracted from the system. This paper shows the feasibility of the application of DLT to SR-related challenges in a practical experiment. For future work, it is proposed to focus on more complex tasks through federated learning or inter-swarm communications, possibly through Cosmos

    Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients

    Get PDF
    Critical illness is often associated with reduced TSH and thyroid hormone secretion as well as marked changes in peripheral thyroid hormone metabolism, resulting in low serum T(3) and high rT(3) levels. To study the mechanism(s) of the latter changes, we determined serum thyroid hormone levels and the expression of the type 1, 2, and 3 iodothyronine deiodinases (D1, D2, and D3) in liver and skeletal muscle from deceased intensive care patients. To study mechanisms underlying these changes, 65 blood samples, 65 liver, and 66 skeletal muscle biopsies were obtained within minutes after death from 80 intensive care unit patients randomized for intensive or conventional insulin treatment. Serum thyroid parameters and the expression of tissue D1-D3 were determined. Serum TSH, T(4), T(3), and the T(3)/rT(3) ratio were lower, whereas serum rT(3) was higher than in normal subjects (P < 0.0001). Liver D1 activity was down-regulated and D3 activity was induced in liver and skeletal muscle. Serum T(3)/rT(3) ratio correlated positively with liver D1 activity (P < 0.001) and negatively with liver D3 activity (ns). These parameters were independent of the type of insulin treatment. Liver D1 and serum T(3)/rT(3) were highest in patients who died from severe brain damage, intermediate in those who died from sepsis or excessive inflammation

    Changes in renal tri-iodothyronine and thyroxine handling during fasting

    Get PDF
    OBJECTIVE: Liver handling of thyroid hormones (TH) has been known to alter significantly during fasting. This study investigates whether renal handling of TH is also changed during fasting. METHODS: We measured urinary excretion rates and clearances of free tri-iodothyronine (T(3)) and free thyroxine (T(4)) in healthy subjects prior to and on the third day of fasting. RESULTS: During fasting, both mean T(3) and T(4) urinary excretion decreased significantly to a mean value of 42% of control. Also, total and free (F) serum T(3) concentrations declined significantly, but serum T(4) did not change. Both FT(3) and FT(4) clearance decreased significantly during fasting (62% and 42% of control). The fasting-induced decrease in uric acid clearance correlated well with the decrease in FT(3) clearance (r=0.94; P<0.001). Serum concentrations of non-esterified fatty acids (NEFA) were significantly elevated during fasting. CONCLUSIONS: The findings cannot be fully explained by the fasting-induced decrease in serum T(3), a

    Effects of interleukin-1 beta on thyrotropin secretion and thyroid hormone uptake in cultured rat anterior pituitary cells

    Get PDF
    The effects of interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF alpha) on basal and TRH-induced TSH release, and the effects of IL-1 beta on the uptake of [125I]T3 and [125I]T4 and on nuclear binding of [125I]T3 were examined. Furthermore, the release of other anterior pituitary hormones in the presence of IL-1 beta was measured. Anterior pituitary cells from male Wistar rats were cultured for 3 days in medium containing 10% FCS. Incubation were performed at 37 C in medium with 0.5% BSA for measurement of [125I]T3 uptake and with 0.1% BSA for measurement of [125I]T4 uptake. Exposure to IL-1 beta (1 pM-1 nM) or TNF alpha (100 pM) for 2-4 h resulted in a significant decline in TSH release, which was almost 50% (P < 0.05) for 1 nM IL-1 beta and 24% (P < 0.05) for 100 pM TNF alpha. Measurement of other anterior pituitary hormones (FSH, LH, PRL, and ACTH) in the same incubation medium showed that IL-1 beta did not alter their release. When the effects of IL-1 beta (1 pM-1 nM) and TNF alpha (100 pM) on TRH-induced TSH release were measured in short term experiments, the inhibitory effects had disappeared. The addition of 1-100 nM octreotide, a somatostatin analog, resulted in a decrease in TRH-induced TSH release up to 33% of the control value (P < 0.05). Exposure to dexamethasone (1 nM to 1 microM) affected basal and TRH-induced TSH release similar to the effect of IL-1 beta. The 15-min uptake of [125I]T3 and [125I]T4, expressed as femtomoles per pM free hormone, was not affected by the presence of IL-1 beta (1-100 pM). When IL-1 beta (100 pM) was present during 3 days of culture, TSH release was reduced to 88 +/- 2% of the control value (P < 0.05). This effect was not associated with an altered [125I]T3 uptake (15 min to 4 h) or with any change in nuclear T3 binding. We conclude that 1) IL-1 beta decreases TSH release by a direct action on the pituitary; 2) this effect is not due to elevated thyroid hormone uptake or increase T3 nuclear occupancy; 3) IL-1 beta does not affect TRH-induced TSH release or the release of other anterior pituitary hormones; and 4) TNF alpha affects basal and TRH-induced TSH release in the same way as IL-1 beta

    Different effects of continuous infusion of interleukin-1 and interleukin-6 on the hypothalamic-hypophysial-thyroid axis

    Get PDF
    The cytokines interleukin-1 (IL-1) and IL-6 are thought to be important mediators in the suppression of thyroid function during nonthyroidal illness. In this study we compared the effects of IL-1 and IL-6 infusion on the hypothalamus-pituitary-thyroid axis in rats. Cytokines were administered by continuous ip infusion of 4 micrograms IL-1 alpha/day for 1, 2, or 7 days or of 15 micrograms IL-6/day for 7 days. Body weight and temperature, food and water intake, and plasma TSH, T4, free T4 (FT4), T3, and corticosterone levels were measured daily, and hypothalamic pro-TRH messenger RNA (mRNA) and hypophysial TSH beta mRNA were determined after termination of the experiments. Compared with saline-treated controls, infusion of IL-1, but not of IL-6, produced a transient decrease in food and water intake, a transient increase in body temperature, and a prolonged decrease in body weight. Both cytokines caused transient decreases in plasma TSH and T4, which were greater and more prolonged with IL-1 than with IL-6, whereas they effected similar transient increases in the plasma FT4 fraction. Infusion with IL-1, but not IL-6, also induced transient decreases in plasma FT4 and T3 and a transient increase in plasma corticosterone. Hypothalamic pro-TRH mRNA was significantly decreased (-73%) after 7 days, but not after 1 or 2 days, of IL-1 infusion and was unaffected by IL-6 infusion. Hypophysial TSH beta mRNA was significantly decreased after 2 (-62%) and 7 (-62%) days, but not after 1 day, of IL-1 infusion and was unaffected by IL-6 infusion. These results are in agreement with previous findings that IL-1, more so than IL-6, directly inhibits thyroid hormone production. They also indicate that IL-1 and IL-6 both decrease plasma T4 binding. Furthermore, both cytokines induce an acute and dramatic decrease in plasma TSH before (IL-1) or even without (IL-6) a decrease in hypothalamic pro-TRH mRNA or hypophysial TSH beta mRNA, suggesting that the acute decrease in TSH secretion is not caused by decreased pro-TRH and TSH beta gene expression. The TSH-suppressive effect of IL-6, either administered as such or induced by IL-1 infusion, may be due to a direct effect on the thyrotroph, whereas additional effects of IL-1 may involve changes in the hypothalamic release of somatostatin or TRH.(ABSTRACT TRUNCATED AT 400 WORDS
    corecore