194 research outputs found

    Mach Stem Height and Growth Rate Predictions

    Get PDF
    A new, more accurate prediction of Mach stem height in steady flow is presented. In addition, starting with a regular reflection in the dual-solution domain, the growth rate of the Mach stem from the time it is first formed till it reaches its steady-state height is presented. Comparisons between theory, experiments, and computations are presented for the Mach stem height. The theory for the Mach stem growth rate in both two and three dimensions is compared to computational results. The Mach stem growth theory provides an explanation for why, once formed, a Mach stem is relatively persistent

    The flow field downstream of a hydraulic jump

    Get PDF
    A control-volume analysis of a hydraulic jump is used to obtain the mean vorticity downstream of the jump as a function of the Froude number. To do this it is necessary to include the conservation of angular momentum. The mean vorticity increases from zero as the cube of Froude number minus one, and, in dimensionless form, approaches a constant at large Froude number. Digital particle imaging velocimetry was applied to travelling hydraulic jumps giving centre-plane velocity field images at a frequency of 15 Hz over a Froude number range of 2–6. The mean vorticity determined from these images confirms the control-volume prediction to within the accuracy of the experiment. The flow field measurements show that a strong shear layer is formed at the toe of the wave, and extends almost horizontally downstream, separating from the free surface at the toe. Various vorticity generation mechanisms are discussed

    Mach Reflection in Steady Flow. I. Mikhail Ivanov's Contributions, II. Caltech Stability Experiments

    Get PDF
    To honor the memory of our friend and colleague Mikhail Ivanov a review of his great contributions to the understanding of the various phenomena associated with steady-flow shock wave reflection is presented. Of course, he has contributed much more widely than that, but I will restrict myself to this part of his work, because it is what I understand best. In particular, his computational and experimental demonstration of hysteresis in the transition between regular and Mach reflection, and his resolution of the difficulties associated with the triple point in weak Mach reflection in terms of the effects of viscosity and heat conduction are reviewed. Finally, some experimental results are presented that demonstrate that, in the dual-solution domain, Mach reflection is more stable than regular reflection

    Beam Misalignments and Fluid Velocities in Laser-Induced Thermal Acoustics

    Get PDF
    Beam misalignments and bulk fluid velocities can influence the time history and intensity of laser-induced thermal acoustics (LITA) signals. A closed-form analytic expression for LITA signals incorporating these effects is derived, allowing the magnitude of beam misalignment and velocity to be inferred from the signal shape. It is demonstrated how instantaneous, nonintrusive, and remote measurement of sound speed and velocity (Mach number) can be inferred simultaneously from homodyne-detected LITA signals. The effects of different forms of beam misalignment are explored experimentally and compared with theory, with good agreement, allowing the amount of misalignment to be measured from the LITA signal. This capability could be used to correct experimental misalignments and account for the effects of misalignment in other LITA measurements. It is shown that small beam misalignments have no influence on the accuracy or repeatability of sound speed measurements with LITA

    Stabilization of Hypersonic Boundary Layers by Porous Coatings

    Get PDF
    A second-mode stability analysis has been performed for a hypersonic boundary layer on a wall covered by a porous coating with equally spaced cylindrical blind microholes. Massive reduction of the second mode amplification is found to be due to the disturbance energy absorption by the porous layer. This stabilization effect was demonstrated by experiments recently conducted on a sharp cone in the T-5 high-enthalpy wind tunnel of the Graduate Aeronautical Laboratories of the California Institute of Technology. Their experimental confirmation of the theoretical predictions underscores the possibility that ultrasonically absorptive porous coatings may be exploited for passive laminar flow control on hypersonic vehicle surfaces

    Accuracy and uncertainty of single-shot, nonresonant laser-induced thermal acoustics

    Get PDF
    We study the accuracy and uncertainty of single-shot nonresonant laser-induced thermal acoustics measurements of the speed of sound and the thermal diffusivity in unseeded atmospheric air from electrostrictive gratings as a function of the laser power settings. For low pump energies, the measured speed of sound is too low, which is due to the influence of noise on the numerical data analysis scheme. For pump energies comparable to and higher than the breakdown energy of the gas, the measured speed of sound is too high. This is an effect of leaving the acoustic limit, and instead creating finite-amplitude density perturbations. The measured thermal diffusivity is too large for high noise levels but it decreases below the predicted value for high pump energies. The pump energy where the error is minimal coincides for the speed of sound and for the thermal diffusivity measurements. The errors at this minimum are 0.03% and 1%, respectively. The uncertainties for the speed of sound and the thermal diffusivity decrease monotonically with signal intensity to 0.25% and 5%, respectively

    Mach Stem Height and Growth Rate Predictions

    Get PDF
    A new, more accurate prediction of Mach stem height in steady flow is presented. In addition, starting with a regular reflection in the dual-solution domain, the growth rate of the Mach stem from the time it is first formed till it reaches its steady-state height is presented. Comparisons between theory, experiments, and computations are presented for the Mach stem height. The theory for the Mach stem growth rate in both two and three dimensions is compared to computational results. The Mach stem growth theory provides an explanation for why, once formed, a Mach stem is relatively persistent

    Course AE107 case studies in engineering: the SR-71 Blackbird

    Get PDF
    Presented by Lockheed Advanced Development Company and the Graduate Aeronautical Laboratories, California Institute of Technology ; program directors, David Urie, Hans Hornung ; teaching assistant, Patrick Germain. The "Blackbird" design was an evolution that took place in a very short period of time but had such advanced technology that it has not been surpassed 25 years later
    corecore