23 research outputs found

    The Ligand Binding Domain Controls Glucocorticoid Receptor Dynamics Independent of Ligand Release▿

    No full text
    Ligand binding to the glucocorticoid receptor (GR) results in receptor binding to glucocorticoid response elements (GREs) and the formation of transcriptional regulatory complexes. Equally important, these complexes are continuously disassembled, with active processes driving GR off GREs. We found that cochaperone p23-dependent disruption of GR-driven transcription depended on the ligand binding domain (LBD). Next, we examined the importance of the LBD and of ligand dissociation in GR-GRE dissociation in living cells. We showed in fluorescence recovery after photobleaching studies that dissociation of GR from GREs is faster in the absence of the LBD. Furthermore, GR interaction with a target promoter revealed ligand-specific exchange rates. However, using covalently binding ligands, we demonstrated that ligand dissociation is not required for receptor dissociation from GREs. Overall, these studies showed that activities impinging on the LBD regulate GR exchange with GREs but that the dissociation of GR from GREs is independent from ligand dissociation

    Cerebellar atrophy in schimke-immuno-osseous dysplasia

    No full text
    Schimke-immuno-osseous dysplasia is an autosomal-recessive multisystem disorder with the prominent clinical features disproportionate growth failure, progressive renal failure, and T-cell immunodeficiency. Neurological symptoms caused by transient ischemic attacks (TlAs) and strokes are a typical clinical finding in severe SIOD. Cerebral ischemia and white matter changes, moyamoya phenomena and absence of a cerebellar hemisphere and partial absence of the cerebellar vermis have been described in patients with severe SIOD. We present three SIOD patients with atrophy of the caudal parts of the cerebellar vermis (posterior lobule) and of the cerebellar hemispheres. We hypothesize that these cerebellar abnormalities are a continuum of the ongoing vascular disease in severe SIOD. (c) 2007 Wiley-Liss, Inc

    Brd4 is displaced from HPV replication factories as they expand and amplify viral DNA.

    Get PDF
    Replication foci are generated by many viruses to concentrate and localize viral DNA synthesis to specific regions of the cell. Expression of the HPV16 E1 and E2 replication proteins in keratinocytes results in nuclear foci that recruit proteins associated with the host DNA damage response. We show that the Brd4 protein localizes to these foci and is essential for their formation. However, when E1 and E2 begin amplifying viral DNA, Brd4 is displaced from the foci and cellular factors associated with DNA synthesis and homologous recombination are recruited. Differentiated HPV-infected keratinocytes form similar nuclear foci that contain amplifying viral DNA. We compare the different foci and show that, while they have many characteristics in common, there is a switch between early Brd4-dependent foci and mature Brd4-independent replication foci. However, HPV genomes encoding mutated E2 proteins that are unable to bind Brd4 can replicate and amplify the viral genome. We propose that, while E1, E2 and Brd4 might bind host chromatin at early stages of infection, there is a temporal and functional switch at later stages and increased E1 and E2 levels promote viral DNA amplification, displacement of Brd4 and growth of a replication factory. The concomitant DNA damage response recruits proteins required for DNA synthesis and repair, which could then be utilized for viral DNA replication. Hence, while Brd4 can enhance replication by concentrating viral processes in specific regions of the host nucleus, this interaction is not absolutely essential for HPV replication

    Radiation metabolomics. 5. Identification of urinary biomarkers of ionizing radiation exposure in nonhuman primates by mass spectrometry-based metabolomics

    No full text
    Mass spectrometry-based metabolomics has previously demonstrated utility for identifying biomarkers of ionizing radiation exposure in cellular, mouse and rat in vivo radiation models. To provide a valuable link from small laboratory rodents to humans, γ-radiation-induced urinary biomarkers were investigated using a nonhuman primate total-body-irradiation model. Mass spectrometry-based metabolomics approaches were applied to determine whether biomarkers could be identified, as well as the previously discovered rodent biomarkers of γ radiation. Ultra-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry analysis was carried out on a time course of clean-catch urine samples collected from nonhuman primates (n = 6 per cohort) exposed to sham, 1.0, 3.5, 6.5 or 8.5 Gy doses of (60)Co γ ray (∼0.55 Gy/min) ionizing radiation. By multivariate data analysis, 13 biomarkers of radiation were discovered: N-acetyltaurine, isethionic acid, taurine, xanthine, hypoxanthine, uric acid, creatine, creatinine, tyrosol sulfate, 3-hydroxytyrosol sulfate, tyramine sulfate, N-acetylserotonin sulfate, and adipic acid. N-Acetyltaurine, isethionic acid, and taurine had previously been identified in rats, and taurine and xanthine in mice after ionizing radiation exposure. Mass spectrometry-based metabolomics has thus successfully revealed and verified urinary biomarkers of ionizing radiation exposure in the nonhuman primate for the first time, which indicates possible mechanisms for ionizing radiation injury

    Brd4 surrounds replication foci in differentiating cells harboring HPV31 genomes.

    No full text
    <p><b>A and B</b> Replication foci were detected by FISH for HPV31 DNA in uninfected keratinocytes (i), and undifferentiated (ii) and differentiated (iii and iv) CIN-612 9E cells. <b>C and D</b> Replication foci were detected by immunofluorescence for γH2AX (cyan) and were also stained for Brd4 (red) DNA in uninfected keratinocytes (i), and undifferentiated (ii) and differentiated (iii and iv) CIN-612 9E cells. <b>A, B, C, D</b>. 3D image stacks were deconvolved and digitally reconstructed using Huygens Essential software. Volume images are shown in A and C and high resolution surface renderings of all objects were generated by Bitplane Imaris software and are shown in B and D. <b>E</b> The γH2AX and Brd4 proteins were detected by immunofluorescence in differentiated CIN-612 9E cells., and following a brief fixation, viral DNA was detected by FISH. Volume images are shown in i and high resolution surface renderings of all objects were generated by Bitplane Imaris software and are shown in ii, iii and iv. γH2AX is shown in cyan, Brd4 in red, and HPV31 DNA in green.</p
    corecore